ホームページ >バックエンド開発 >Python チュートリアル >カスタム文字起こしとクリッピング パイプライン
私はこのプロジェクトに取り組んでおり、過酷なデータ エンジニアリング コンポーネントの公開を処理するためのツールを多数開発しました。その一部は独創的なものですが、ほとんどは次の Gemini モデルに急襲され、愚かな Google Colab Gemini 提案エンジン。 - ティム
import os import shutil import cv2 import numpy as np import json from PIL import Image import random import string from rembg import remove import ffmpeg from datetime import timedelta from ultralytics import YOLO import whisperx import gc gc.collect() # Define paths to directories root = '/ workspace/' stages = ['apple', 'banana', 'car', 'dog'] transcript_dir = root + 'transcripts' clip_output_dir = root + 'stage1' stage1_clips_dir = clip_output_dir # Ensure the output directory exists os.makedirs(transcript_dir, exist_ok=True) os.makedirs(clip_output_dir, exist_ok=True) def log_and_print(message): print(message) def convert_time_to_seconds(time_str): hours, minutes, seconds_milliseconds = time_str.split(':') seconds, milliseconds = seconds_milliseconds.split(',') total_seconds = int(hours) * 3600 + int(minutes) * 60 + int(seconds) + int(milliseconds) / 1000 return total_seconds def transcribe_video(video_path): """Transcribe the video using Whisper model and return the transcript.""" compute_type = "float32" model = whisperx.load_model("large-v2", device='cpu', compute_type=compute_type) audio = whisperx.load_audio(video_path) result = model.transcribe(audio, batch_size=4, language="en") model_a, metadata = whisperx.load_align_model(language_code=result["language"], device='cpu') aligned_result = whisperx.align(result["segments"], model_a, metadata, audio, 'cpu', return_char_alignments=False) segments = aligned_result["segments"] transcript = [] for index, segment in enumerate(segments): start_time = str(0) + str(timedelta(seconds=int(segment['start']))) + ',000' end_time = str(0) + str(timedelta(seconds=int(segment['end']))) + ',000' text = segment['text'] segment_text = { "index": index + 1, "start_time": start_time, "end_time": end_time, "text": text.strip(), } transcript.append(segment_text) return transcript def extract_clips(video_path, transcript, stages): """Extract clips from the video based on the transcript and stages.""" base_filename = os.path.splitext(os.path.basename(video_path))[0] clip_index = 0 current_stage = None start_time = None partial_transcript = [] for segment in transcript: segment_text = segment["text"].lower() for stage in stages: if stage in segment_text: if current_stage is not None: end_time = convert_time_to_seconds(segment["start_time"]) output_clip_filename = f"{base_filename}.{current_stage}.mp4" output_clip = os.path.join(clip_output_dir, output_clip_filename) if not os.path.exists(output_clip): try: ffmpeg.input(video_path, ss=start_time, to=end_time).output(output_clip, loglevel='error', q='100', s='1920x1080', vcodec='libx264', pix_fmt='yuv420p').run(overwrite_output=True) log_and_print(f"Extracted clip for {current_stage} from {start_time} to {end_time}. Saved: {output_clip}") except ffmpeg.Error as e: log_and_print(f"Error extracting clip: {e}") transcript_text = "\n".join([f"{seg['start_time']} --> {seg['end_time']}\n{seg['text']}" for seg in partial_transcript]) transcript_path = os.path.join(clip_output_dir, f"{base_filename}.{current_stage}.json") with open(transcript_path, 'w', encoding='utf-8') as f: json.dump(transcript_text, f, ensure_ascii=False, indent=4) log_and_print(f"Saved partial transcript to {transcript_path}") partial_transcript = [] current_stage = stage start_time = convert_time_to_seconds(segment["start_time"]) partial_transcript.append(segment) if current_stage is not None: end_time = convert_time_to_seconds(transcript[-1]["end_time"]) output_clip_filename = f"{base_filename}.{current_stage}.mp4" output_clip = os.path.join(clip_output_dir, output_clip_filename) if not os.path.exists(output_clip): try: ffmpeg.input(video_path, ss=start_time, to=end_time).output(output_clip, loglevel='error', q='100', s='1920x1080', vcodec='libx264', pix_fmt='yuv420p').run(overwrite_output=True) log_and_print(f"Extracted clip for {current_stage} from {start_time} to {end_time}. Saved: {output_clip}") except ffmpeg.Error as e: log_and_print(f"Error extracting clip: {e}") transcript_text = "\n".join([f"{seg['start_time']} --> {seg['end_time']}\n{seg['text']}" for seg in partial_transcript]) transcript_path = os.path.join(clip_output_dir, f"{base_filename}.{current_stage}.json") with open(transcript_path, 'w', encoding='utf-8') as f: json.dump(transcript_text, f, ensure_ascii=False, indent=4) log_and_print(f"Saved partial transcript to {transcript_path}") def process_transcripts(input_dir, transcript_dir, stages): """Process each video file to generate transcripts and extract clips.""" video_files = [f for f in os.listdir(input_dir) if f.endswith('.mp4') or f.endswith('.MOV') or f.endswith('.mov')] for video_file in video_files: video_path = os.path.join(input_dir, video_file) transcript_path = os.path.join(transcript_dir, os.path.splitext(video_file)[0] + ".json") if not os.path.exists(transcript_path): transcript = transcribe_video(video_path) with open(transcript_path, 'w', encoding='utf-8') as f: json.dump(transcript, f, ensure_ascii=False, indent=4) log_and_print(f"Created transcript for {video_path}") else: with open(transcript_path, 'r', encoding='utf-8') as f: transcript = json.load(f) extract_clips(video_path, transcript, stages) process_transcripts(root, transcript_dir, stages)
----------EOF----------
カナダ中西部出身のティムによって作成されました。
2024.
このドキュメントは GPL ライセンスを取得しています。
以上がカスタム文字起こしとクリッピング パイプラインの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。