検索
ホームページJava&#&チュートリアルJavaフレームワークとビッグデータ技術の統合応用

Javaフレームワークとビッグデータ技術の統合応用

Jun 06, 2024 am 10:29 AM
Javaフレームワークビッグデータ技術

Java フレームワークとビッグ データ テクノロジの統合アプリケーションには、Apache Hadoop と MapReduce: 分散コンピューティングと大量データの並列処理が含まれます。 Apache Spark と構造化ストリーミング処理: データ処理を統合し、変化するデータをリアルタイムで処理します。 Apache Flink とストリーミング コンピューティング: 低遅延、高スループット、リアルタイム データ ストリームの処理。これらのフレームワークは実際に広く使用されており、企業が強力なシステムを構築し、ビッグデータを処理および分析し、効率を向上させ、洞察を提供し、意思決定を促進できるようにします。

Javaフレームワークとビッグデータ技術の統合応用

Javaフレームワークとビッグデータ技術の統合アプリケーション

ビッグデータ時代の到来により、大量のデータの処理と分析が重要になってきました。この課題に対処するために、Java フレームワークと関連する分散ビッグ データ テクノロジがさまざまな分野で広く使用されています。

Apache Hadoop と MapReduce

Apache Hadoop は、ビッグデータの処理と分析を簡単に行う方法を提供する分散コンピューティング プラットフォームです。 MapReduce は、データ セットをより小さなチャンクに分割し、これらのチャンクを並列処理するプログラミング モデルです。

JobConf conf = new JobConf(HadoopExample.class);
conf.setMapperClass(Mapper.class);
conf.setReducerClass(Reducer.class);

FileInputFormat.setInputPaths(conf, new Path("input"));
FileOutputFormat.setOutputPath(conf, new Path("output"));

Job job = new Job(conf);
job.waitForCompletion(true);

構造化ストリーミングを備えた Spark

Apache Spark は、構造化データ、半構造化データ、非構造化データを含むあらゆる種類のデータを処理できる統合データ処理エンジンです。 Spark の Structured Streaming API を使用すると、変化するデータをリアルタイムで処理できます。

SparkSession spark = SparkSession.builder().getOrCreate();

Dataset<Row> df = spark
  .readStream()
  .format("kafka")
  .option("kafka.bootstrap.servers", "localhost:9092")
  .option("subscribe", "my-topic")
  .load();

df.writeStream()
  .format("console")
  .outputMode("append")
  .start()
  .awaitTermination();

Apache Flink は、リアルタイム データ ストリームを処理できる分散ストリーミング エンジンです。 Flink は非常に低い遅延と高いスループットを提供するため、リアルタイム データの処理に最適です。

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

DataStream<String> source = env.readTextFile("input");

DataStream<Integer> counts = source
  .flatMap(new FlatMapFunction<String, Integer>() {
    @Override
    public void flatMap(String value, Collector<Integer> out) {
      for (String word : value.split(" ")) {
        out.collect(1);
      }
    }
  })
  .keyBy(v -> v)
  .sum(1);

counts.print();

env.execute();

実践事例

これらのフレームワークは、実際のアプリケーションで広く使用されています。たとえば、Apache Hadoop は、検索エンジン データ、ゲノム データ、金融取引データの分析に使用されます。 Spark は、機械学習モデル、不正検出システム、推奨エンジンの構築に使用されます。 Flink は、リアルタイムのクリック ストリーム、センサー データ、金融取引を処理するために使用されます。

Java フレームワークとビッグ データ テクノロジを組み合わせることで、企業は大量のデータを処理および分析するための強力でスケーラブルなシステムを構築します。これらのシステムは、運用効率を向上させ、新しい洞察を提供し、意思決定の向上を促進します。

以上がJavaフレームワークとビッグデータ技術の統合応用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール