検索
ホームページテクノロジー周辺機器AI説明可能な AI: 複雑な AI/ML モデルの説明

翻訳者 | Li Rui

レビュー担当者 | Chonglou

最近、人工知能 (AI) と機械学習 (ML) のモデルはますます複雑になっており、これらのモデルはの出力はブラックボックスであり、関係者に説明できません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を理解できるようにし、AI システムの透明性、信頼性、およびこの問題に対処するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。

説明可能な AI: 複雑な AI/ML モデルの説明

説明可能な AI が重要である理由のいくつか

  • 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります。
  • 規制遵守: 欧州連合の一般データ保護規則 (GDPR) などの法律では、個人に影響を及ぼす自動化された決定についての説明が求められています。
  • モデルのデバッグと改善: モデルの決定に関する洞察を得ることで、開発者がバイアスや不正確さを特定して修正するのに役立ちます。

解釈可能性 人工知能のコアテクノロジー

インテリジェントワーカーの解釈可能性は、モデルに依存しない方法とモデル固有の方法に分けることができる技術モデルを指し、それぞれの方法は異なる用途に適していますスマート ワーカー モデルとアプリケーションの種類。

モデルに依存しない手法

(1) ローカルに解釈可能なモデルに依存しない説明 (LIME)

ローカルに解釈可能なモデルに依存しない説明 (LIME) は、予測を行うために設計された革新的なテクノロジーです。の人間が理解できる複雑な機械学習モデル。基本的に、LIME の利点は、そのシンプルさと、複雑さに関係なく、分類子やリグレッサーの動作を説明できることにあります。 LIME は、入力データの近傍でサンプリングし、単純なモデル (線形回帰モデルなど) を使用して元の複雑なモデルの予測を近似することによって機能します。単純なモデルは、複雑なモデルの意思決定プロセスを理解できるように、特定の入力に対する複雑なモデルの予測を解釈する方法を学習します。このようにして、複雑なモデルがブラックボックスであっても、解釈可能なモデルを使用して局所的に近似することで、単純なモデル

LIME の解釈を通じて、任意の分類子や回帰子の予測を明らかにすることができます。重要なアイデアは、入力データに摂動を加え、予測がどのように変化するかを観察することです。これは、予測に大きな影響を与える特徴を特定するのに役立ちます。

数学的には、特定のインスタンス (x) とモデル (f) に対して、LIME は新しいサンプル データセットを生成し、それらに (f) のラベルを付けます。次に、局所的に (f) に忠実な (f) に基づく単純なモデル (線形モデルなど) を学習し、次の目的を最小限に抑えます:

[ xi(x) = underset{g in G }{text {argmin}} ; L(f, g, pi_x) + Omega(g) ]

ここで、(L) は、(x の周りで (f) を近似するときの (g) の忠実度の尺度です。 )、( pi_x) は、(x) の周囲の局所近傍を定義する近接度の尺度であり、(Omega) は (g) の複雑さにペナルティを与えます。

(2) Shapley additivityexplanation (SHAP) ) を指定することで、予測された各特徴には、機械学習モデルの出力を理解するのに役立つ重要な値が割り当てられます。人々が家の広さ、築年数、場所などの特徴に基づいて家の価格を予測しようとしていると想像してください。特定の機能は予想価格を引き上げる可能性がありますが、他の機能は予想価格を下げる可能性があります。 SHAP 値は、ベースライン予測 (データセットの平均予測) と比較して、最終予測に対する各特徴の寄与を正確に定量化するのに役立ちます。

特徴 (i) の SHAP 値は次のように定義されます:

[ phi_i = sum_{S subseteq F setminus {i}} frac{|S|!(|F| - |S | - 1)!}{|F|!} [f_x(S カップ {i}) - f_x(S)] ]

ここで、F) はすべての特徴の集合、S) は( i の特徴のサブセット)、(f_x(S)) は特徴セット S の予測です) を除き、その合計がすべての可能な特徴サブセットになります。この式により、各特徴の寄与が、予測への影響に基づいて公平に分散されることが保証されます。

モデル固有の手法

(1) ニューラルネットワークのアテンションメカニズム

ニューラルネットワークのアテンションメカニズムは、予測を行うのに最も関連する入力データの部分を強調します。 。シーケンス間モデルのシナリオでは、ターゲット タイム ステップ (t) とソース タイム ステップ (j) のアテンション ウェイト (alpha_{tj}) は次のように計算されます。 frac {exp(e_{tj})}{sum_{k=1}^{T_s} exp(e_{tk})} ]

ここで、(e_{tj}) は位置 (j) の入力と位置 (t) の出力の間のアラインメントを評価するスコアリング関数であり、(T_s) は入力シーケンスの長さです。このメカニズムにより、モデルは入力データの関連部分に焦点を当てることができるため、解釈可能性が向上します。

(2) デシジョン ツリーの視覚化

デシジョン ツリーは、入力特徴から導出された一連のルールとして決定を表すことによって、固有の解釈可能性を提供します。デシジョン ツリーの構造により、ノードが特徴ベースの決定を表し、リーフが結果を表す視覚化が可能になります。この視覚的表現により、入力特徴がどのように特定の予測につながるかを直接追跡できます。

(3) 実際の実装と倫理的考慮事項

説明可能な AI を実装するには、モデルの種類、アプリケーション要件、説明の対象者を慎重に検討する必要があります。モデルのパフォーマンスと解釈可能性の間でトレードオフを行うことも重要です。倫理的には、AI システムの公平性、説明責任、透明性を確保することが重要です。説明可能な AI の将来の方向性としては、説明フレームワークの標準化と、より効率的な説明方法の研究の継続が挙げられます。

結論

Explainable AI は、複雑な AI/ML モデルを解釈し、アプリケーションにおける信頼を提供し、説明責任を確保するために不可欠です。 LIME、SHAP、アテンション メカニズム、デシジョン ツリー視覚化などのテクノロジーを利用します。この分野が進化するにつれて、ソフトウェア開発と規制遵守の進化するニーズに対応するには、より洗練され標準化された解釈可能な AI 手法の開発が重要になります。

原題: Explainable AI: Interpreting Complex AI/ML Model 著者: Rajiv Avacharmal


以上が説明可能な AI: 複雑な AI/ML モデルの説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
迅速なエンジニアリングにおける思考のグラフは何ですか迅速なエンジニアリングにおける思考のグラフは何ですかApr 13, 2025 am 11:53 AM

導入 迅速なエンジニアリングでは、「思考のグラフ」とは、グラフ理論を使用してAIの推論プロセスを構造化および導く新しいアプローチを指します。しばしば線形sを含む従来の方法とは異なります

Genaiエージェントとの電子メールマーケティングを組織に最適化しますGenaiエージェントとの電子メールマーケティングを組織に最適化しますApr 13, 2025 am 11:44 AM

導入 おめでとう!あなたは成功したビジネスを運営しています。ウェブページ、ソーシャルメディアキャンペーン、ウェビナー、会議、無料リソース、その他のソースを通じて、毎日5000の電子メールIDを収集します。次の明白なステップはです

Apache Pinotによるリアルタイムアプリのパフォーマンス監視Apache Pinotによるリアルタイムアプリのパフォーマンス監視Apr 13, 2025 am 11:40 AM

導入 今日のペースの速いソフトウェア開発環境では、最適なアプリケーションパフォーマンスが重要です。応答時間、エラーレート、リソース利用などのリアルタイムメトリックを監視することで、メインに役立ちます

ChatGptは10億人のユーザーにヒットしますか? 「わずか数週間で2倍になりました」とOpenai CEOは言いますChatGptは10億人のユーザーにヒットしますか? 「わずか数週間で2倍になりました」とOpenai CEOは言いますApr 13, 2025 am 11:23 AM

「ユーザーは何人いますか?」彼は突き出した。 「私たちが最後に言ったのは毎週5億人のアクティブであり、非常に急速に成長していると思います」とアルトマンは答えました。 「わずか数週間で2倍になったと言った」とアンダーソンは続けた。 「私はそのprivと言いました

PIXTRAL -12B:Mistral AI'の最初のマルチモーダルモデル-Analytics VidhyaPIXTRAL -12B:Mistral AI'の最初のマルチモーダルモデル-Analytics VidhyaApr 13, 2025 am 11:20 AM

導入 Mistralは、最初のマルチモーダルモデル、つまりPixtral-12B-2409をリリースしました。このモデルは、Mistralの120億個のパラメーターであるNemo 12bに基づいて構築されています。このモデルを際立たせるものは何ですか?これで、画像とTexの両方を採用できます

生成AIアプリケーションのエージェントフレームワーク - 分析Vidhya生成AIアプリケーションのエージェントフレームワーク - 分析VidhyaApr 13, 2025 am 11:13 AM

クエリに応答するだけでなく、情報を自律的に収集し、タスクを実行し、テキスト、画像、コードなどの複数のタイプのデータを処理するAIを搭載したアシスタントがいることを想像してください。未来的に聞こえますか?これでa

金融セクターにおける生成AIの応用金融セクターにおける生成AIの応用Apr 13, 2025 am 11:12 AM

導入 金融業界は、効率的な取引と信用の可用性を促進することにより経済成長を促進するため、あらゆる国の発展の基礎となっています。取引の容易さとクレジット

オンライン学習とパッシブアグレッシブアルゴリズムのガイドオンライン学習とパッシブアグレッシブアルゴリズムのガイドApr 13, 2025 am 11:09 AM

導入 データは、ソーシャルメディア、金融取引、eコマースプラットフォームなどのソースから前例のないレートで生成されています。この連続的な情報ストリームを処理することは課題ですが、

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境