昨日の面接で、ロングテール関連の質問をしたことがあるか聞かれたので、簡単にまとめてみようと思いました。
自動運転車のロングテール問題とは、自動運転車のエッジケース、つまり、発生確率が低い起こり得るシナリオを指します。認識されているロングテール問題は、現在、単一車両のインテリジェント自動運転車の運用設計領域を制限している主な理由の 1 つです。自動運転の基礎となるアーキテクチャとほとんどの技術的問題は解決されており、残りの 5% のロングテール問題が徐々に自動運転の開発を制限する鍵となってきています。これらの問題には、さまざまな断片的なシナリオ、極端な状況、予測不可能な人間の行動が含まれます。
自動運転におけるエッジシナリオ
「ロングテール」とは、自動運転車(AV)におけるエッジケースを指し、発生確率が低い可能性のあるシナリオです。これらのまれなイベントは、発生頻度が低く、より固有であるため、データセットでは見逃されることがよくあります。 人間は本来、エッジケースに対処するのが得意ですが、AI については同じことが言えません。エッジ シーンの原因となる可能性のある要因には、トラックや突起のある特殊な形状の車両、急旋回する車両、混雑した群衆の中での運転、歩道橋を歩く歩行者、異常気象や照明条件が悪い、傘をさしている人、車に乗っている人、そして移動する箱、木の落下などがあります。道路の真ん中などで例:
- 車の前に透明なフィルムを置きます、透明な物体は認識されますか、そして車両は減速しますか?
- LiDAR会社Aeyeは挑戦をしました、自動運転はどのように対処しますか?道路の真ん中に浮かぶ風船? L4 の無人運転車は衝突を回避する傾向があり、この場合、不要な事故を避けるために回避行動をとったり、ブレーキをかけたりします。風船は柔らかい物体なので、障害物がなく直接通過できます。
ロングテール問題を解決する方法
合成データは大きな概念であり、知覚データ (nerf、カメラ/センサー sim) は、より優れた分野の 1 つにすぎません。業界では、長い間、合成データがロングテール行動シミュレーションにおける標準的な答えとなってきました。合成データ、つまりスパース信号のアップサンプリングは、ロングテール問題に対する最初の解決策の 1 つです。ロングテール能力は、モデルの汎化能力とデータに含まれる情報量の積です。Tesla ソリューション:
合成データを使用してエッジ シーンを生成し、データ セットを強化します データ エンジンの原理: まず、既存のモデルの不正確さを検出し、次に単体テストに追加されたこのクラス ケースを使用します。また、モデルを再トレーニングするために、同様のケースに関するより多くのデータを収集します。この反復的なアプローチにより、できるだけ多くのエッジ ケースをキャプチャできます。エッジ ケースを作成する際の主な課題は、エッジ ケースの収集とラベル付けのコストが比較的高いことです。もう 1 つは、収集動作が非常に危険であるか、達成が不可能である可能性があることです。
NVIDIA のソリューション:
NVIDIA は最近、「模倣トレーニング」と呼ばれる戦略的アプローチを提案しました (下の図)。このアプローチでは、現実世界のシステム障害ケースがシミュレートされた環境で再現され、自動運転車のトレーニング データとして使用されます。このサイクルは、モデルのパフォーマンスが収束するまで繰り返されます。 このアプローチの目標は、障害シナリオを継続的にシミュレートすることで自動運転システムの堅牢性を向上させることです。シミュレーション トレーニングにより、開発者は現実世界のさまざまな障害シナリオをより深く理解し、解決できるようになります。さらに、大量のトレーニング データを迅速に生成して、モデルのパフォーマンスを向上させることができます。 このサイクルを繰り返すことで、いくつかの考え:
Q: 合成データは価値がありますか? A: ここでの値は 2 つのタイプに分けられます。1 つはテストの有効性、つまり、生成されたシーンで検出アルゴリズムの欠陥が見つかるかどうかをテストすることです。2 つ目は、トレーニングの有効性、つまり、生成されたシーンです。アルゴリズムのトレーニングによってパフォーマンスも効果的に向上できるかどうか。 Q: 仮想データを使用してパフォーマンスを向上させるにはどうすればよいですか?トレーニング セットにダミー データを追加する必要は本当にありますか?これを追加するとパフォーマンスの低下が発生しますか? A: これらの質問は答えるのが難しいため、トレーニングの精度を向上させるためにさまざまなソリューションが作成されています。- ハイブリッド トレーニング: パフォーマンスを向上させるために、さまざまな割合の仮想データを実際のデータに追加します。
- 転移学習: 実際のデータを使用してモデルを事前トレーニングし、特定のレイヤーをフリーズしてから、トレーニング用に混合データを追加します。
- 模倣学習: モデルエラーのいくつかのシナリオを設計し、データを生成することで、モデルのパフォーマンスを徐々に改善することも非常に自然です。実際のデータ収集とモデルのトレーニングでは、パフォーマンスを向上させるために、対象を絞った方法でいくつかの補足データも収集されます。
いくつかの拡張:
AI システムの堅牢性を徹底的に評価するには、単体テストに一般的なケースとエッジ ケースの両方を含める必要があります。ただし、一部のエッジ ケースは、既存の実世界のデータセットからは利用できない場合があります。これを行うために、AI 担当者はテストに合成データを使用できます。
その一例は、自動運転車の視覚知能をテストするために使用される合成データセットである ParallelEye-CS です。実世界のデータを使用する場合と比較して、合成データを作成する利点は、各画像のシーンを多次元で制御できることです。
合成データは、プロダクション AV モデルのエッジケースに対する実行可能なソリューションとして機能します。現実世界のデータセットをエッジケースで補完し、異常な事態が発生した場合でも AV が堅牢であることを保証します。また、実際のデータよりも拡張性が高く、エラーが発生しにくく、安価です。
以上が自動運転シナリオにおけるロングテール問題を解決するにはどうすればよいでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

arXiv论文“Insertion of real agents behaviors in CARLA autonomous driving simulator“,22年6月,西班牙。由于需要快速prototyping和广泛测试,仿真在自动驾驶中的作用变得越来越重要。基于物理的模拟具有多种优势和益处,成本合理,同时消除了prototyping、驾驶员和弱势道路使用者(VRU)的风险。然而,主要有两个局限性。首先,众所周知的现实差距是指现实和模拟之间的差异,阻碍模拟自主驾驶体验去实现有效的现实世界

特斯拉是一个典型的AI公司,过去一年训练了75000个神经网络,意味着每8分钟就要出一个新的模型,共有281个模型用到了特斯拉的车上。接下来我们分几个方面来解读特斯拉FSD的算法和模型进展。01 感知 Occupancy Network特斯拉今年在感知方面的一个重点技术是Occupancy Network (占据网络)。研究机器人技术的同学肯定对occupancy grid不会陌生,occupancy表示空间中每个3D体素(voxel)是否被占据,可以是0/1二元表示,也可以是[0, 1]之间的

当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。行业内已经确认CPU不适用于AI计算,但是在AI应用领域也是必不可少。 GPU方案GPU与CPU的架构对比CPU遵循的是冯·诺依曼架构,其核心是存储程序/数据、串行顺序执行。因此CPU的架构中需要大量的空间去放置存储单元(Cache)和控制单元(Control),相比之下计算单元(ALU)只占据了很小的一部分,所以CPU在进行大规模并行计算

gPTP定义的五条报文中,Sync和Follow_UP为一组报文,周期发送,主要用来测量时钟偏差。 01 同步方案激光雷达与GPS时间同步主要有三种方案,即PPS+GPRMC、PTP、gPTPPPS+GPRMCGNSS输出两条信息,一条是时间周期为1s的同步脉冲信号PPS,脉冲宽度5ms~100ms;一条是通过标准串口输出GPRMC标准的时间同步报文。同步脉冲前沿时刻与GPRMC报文的发送在同一时刻,误差为ns级别,误差可以忽略。GPRMC是一条包含UTC时间(精确到秒),经纬度定位数据的标准格

2 月 16 日消息,特斯拉的新自动驾驶计算机,即硬件 4.0(HW4)已经泄露,该公司似乎已经在制造一些带有新系统的汽车。我们已经知道,特斯拉准备升级其自动驾驶硬件已有一段时间了。特斯拉此前向联邦通信委员会申请在其车辆上增加一个新的雷达,并称计划在 1 月份开始销售,新的雷达将意味着特斯拉计划更新其 Autopilot 和 FSD 的传感器套件。硬件变化对特斯拉车主来说是一种压力,因为该汽车制造商一直承诺,其自 2016 年以来制造的所有车辆都具备通过软件更新实现自动驾驶所需的所有硬件。事实证

arXiv论文“Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline“, 2022年6月,上海AI实验室和上海交大。当前的端到端自主驾驶方法要么基于规划轨迹运行控制器,要么直接执行控制预测,这跨越了两个研究领域。鉴于二者之间潜在的互利,本文主动探索两个的结合,称为TCP (Trajectory-guided Control Prediction)。具

什么是交通标志识别系统?汽车安全系统的交通标志识别系统,英文翻译为:Traffic Sign Recognition,简称TSR,是利用前置摄像头结合模式,可以识别常见的交通标志 《 限速、停车、掉头等)。这一功能会提醒驾驶员注意前面的交通标志,以便驾驶员遵守这些标志。TSR 功能降低了驾驶员不遵守停车标志等交通法规的可能,避免了违法左转或者无意的其他交通违法行为,从而提高了安全性。这些系统需要灵活的软件平台来增强探测算法,根据不同地区的交通标志来进行调整。交通标志识别原理交通标志识别又称为TS

定位在自动驾驶中占据着不可替代的地位,而且未来有着可期的发展。目前自动驾驶中的定位都是依赖RTK配合高精地图,这给自动驾驶的落地增加了不少成本与难度。试想一下人类开车,并非需要知道自己的全局高精定位及周围的详细环境,有一条全局导航路径并配合车辆在该路径上的位置,也就足够了,而这里牵涉到的,便是SLAM领域的关键技术。什么是SLAMSLAM (Simultaneous Localization and Mapping),也称为CML (Concurrent Mapping and Localiza


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 中国語版
中国語版、とても使いやすい

WebStorm Mac版
便利なJavaScript開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

ホットトピック



