検索
ホームページバックエンド開発Python チュートリアルPython标准库之随机数 (math包、random包)介绍

我们已经在Python运算中看到Python最基本的数学运算功能。此外,math包补充了更多的函数。当然,如果想要更加高级的数学功能,可以考虑选择标准库之外的numpy和scipy项目,它们不但支持数组和矩阵运算,还有丰富的数学和物理方程可供使用。

此外,random包可以用来生成随机数。随机数不仅可以用于数学用途,还经常被嵌入到算法中,用以提高算法效率,并提高程序的安全性。

math包

math包主要处理数学相关的运算。math包定义了两个常数:

复制代码 代码如下:

math.e   # 自然常数e
math.pi  # 圆周率pi

此外,math包还有各种运算函数 (下面函数的功能可以参考数学手册):

复制代码 代码如下:

math.ceil(x)       # 对x向上取整,比如x=1.2,返回2
math.floor(x)      # 对x向下取整,比如x=1.2,返回1
math.pow(x,y)      # 指数运算,得到x的y次方
math.log(x)        # 对数,默认基底为e。可以使用base参数,来改变对数的基地。比如math.log(100,base=10)
math.sqrt(x)       # 平方根

三角函数: math.sin(x), math.cos(x), math.tan(x), math.asin(x), math.acos(x), math.atan(x)

这些函数都接收一个弧度(radian)为单位的x作为参数。

角度和弧度互换: math.degrees(x), math.radians(x)

双曲函数: math.sinh(x), math.cosh(x), math.tanh(x), math.asinh(x), math.acosh(x), math.atanh(x)

特殊函数: math.erf(x), math.gamma(x)

random包

如果你已经了解伪随机数(psudo-random number)的原理,那么你可以使用如下:

复制代码 代码如下:

random.seed(x)

来改变随机数生成器的种子seed。如果你不了解其原理,你不必特别去设定seed,Python会帮你选择seed。

1) 随机挑选和排序

random.choice(seq)   # 从序列的元素中随机挑选一个元素,比如random.choice(range(10)),从0到9中随机挑选一个整数。
random.sample(seq,k) # 从序列中随机挑选k个元素
random.shuffle(seq)  # 将序列的所有元素随机排序

2)随机生成实数

下面生成的实数符合均匀分布(uniform distribution),意味着某个范围内的每个数字出现的概率相等:

复制代码 代码如下:

random.random()          # 随机生成下一个实数,它在[0,1)范围内。
random.uniform(a,b)      # 随机生成下一个实数,它在[a,b]范围内。

下面生成的实数符合其它的分布 (你可以参考一些统计方面的书籍来了解这些分布):

复制代码 代码如下:

random.gauss(mu,sigma)    # 随机生成符合高斯分布的随机数,mu,sigma为高斯分布的两个参数。
random.expovariate(lambd) # 随机生成符合指数分布的随机数,lambd为指数分布的参数。

此外还有对数分布,正态分布,Pareto分布,Weibull分布,可参考下面链接:

http://docs.python.org/library/random.html

假设我们有一群人参加舞蹈比赛,为了公平起见,我们要随机排列他们的出场顺序。我们下面利用random包实现:

复制代码 代码如下:

import random
all_people = ['Tom', 'Vivian', 'Paul', 'Liya', 'Manu', 'Daniel', 'Shawn']
random.shuffle(all_people)
for i,name in enumerate(all_people):
    print(i,':'+name)

练习

设计下面两种彩票号码生成器:

1. 从1到22中随机抽取5个整数 (这5个数字不重复)

2. 随机产生一个8位数字,每位数字都可以是1到6中的任意一个整数。

总结

math.floor(), math.sqrt(), math.sin(), math.degrees()

random.random(), random.choice(), random.shuffle()

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonを使用した科学コンピューティングでアレイはどのように使用されていますか?Pythonを使用した科学コンピューティングでアレイはどのように使用されていますか?Apr 25, 2025 am 12:28 AM

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

同じシステムで異なるPythonバージョンをどのように処理しますか?同じシステムで異なるPythonバージョンをどのように処理しますか?Apr 25, 2025 am 12:24 AM

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

標準のPythonアレイでnumpyアレイを使用することの利点は何ですか?標準のPythonアレイでnumpyアレイを使用することの利点は何ですか?Apr 25, 2025 am 12:21 AM

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、

アレイの均質な性質はパフォーマンスにどのように影響しますか?アレイの均質な性質はパフォーマンスにどのように影響しますか?Apr 25, 2025 am 12:13 AM

パフォーマンスに対する配列の均一性の影響は二重です。1)均一性により、コンパイラはメモリアクセスを最適化し、パフォーマンスを改善できます。 2)しかし、タイプの多様性を制限し、それが非効率につながる可能性があります。要するに、適切なデータ構造を選択することが重要です。

実行可能なPythonスクリプトを作成するためのベストプラクティスは何ですか?実行可能なPythonスクリプトを作成するためのベストプラクティスは何ですか?Apr 25, 2025 am 12:11 AM

craftexecutablepythonscripts、次のようになります

numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?Apr 24, 2025 pm 03:53 PM

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Apr 24, 2025 pm 03:49 PM

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

CTypesモジュールは、Pythonの配列にどのように関連していますか?CTypesモジュールは、Pythonの配列にどのように関連していますか?Apr 24, 2025 pm 03:45 PM

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境