検索
ホームページバックエンド開発Python チュートリアルPython网页解析利器BeautifulSoup安装使用介绍

python解析网页,无出BeautifulSoup左右,此是序言

安装

BeautifulSoup4以后的安装需要用eazy_install,如果不需要最新的功能,安装版本3就够了,千万别以为老版本就怎么怎么不好,想当初也是千万人在用的啊。安装很简单

复制代码 代码如下:

$ wget "http://www.crummy.com/software/BeautifulSoup/download/3.x/BeautifulSoup-3.2.1.tar.gz" 
$ tar zxvf BeautifulSoup-3.2.1.tar.gz 

然后把里面的BeautifulSoup.py这个文件放到你python安装目录下的site-packages目录下

site-packages是存放Python第三方包的地方,至于这个目录在什么地方呢,每个系统不一样,可以用下面的方式找一下,基本上都能找到

复制代码 代码如下:

$ sudo find / -name "site-packages" -maxdepth 5 -type d 
$ find ~ -name "site-packages" -maxdepth 5 

当然如果没有root权限就查找当前用户的根目录
复制代码 代码如下:

$ find ~ -name "site-packages" -maxdepth 5 -type d 

如果你用的是Mac,哈哈,你有福了,我可以直接告诉你,Mac的这个目录在/Library/Python/下,这个下面可能会有多个版本的目录,没关系,放在最新的一个版本下的site-packages就行了。使用之前先import一下
复制代码 代码如下:

from BeautifulSoup import BeautifulSoup 

使用

在使用之前我们先来看一个实例
现在给你这样一个页面

复制代码 代码如下:

http://movie.douban.com/tag/%E5%96%9C%E5%89%A7

它是豆瓣电影分类下的喜剧电影,如果让你找出里面评分最高的100部,该怎么做呢
好了,我先晒一下我做的,鉴于本人在CSS方面处于小白阶段以及天生没有美术细菌,界面做的也就将就能看下,别吐

接下来我们开始学习BeautifulSoup的一些基本方法,做出上面那个页面就易如反掌了

鉴于豆瓣那个页面比较复杂,我们先以一个简单样例来举例,假设我们处理如下的网页代码

复制代码 代码如下:

 
Page title 
 
   

 
    This is paragraph 
         
        one 
       
 
        . 
   

 
   

 
    This is paragraph 
         
        two 
       
 
        . 
   

 
 
 

你没看错,这就是官方文档里的一个样例,如果你有耐心,看官方文档就足够了,后面的你都不用看
http://www.leeon.me/upload/other/beautifulsoup-documentation-zh.html

初始化

首先将上面的HTML代码赋给一个变量html如下,为了方便大家复制这里贴的是不带回车的,上面带回车的代码可以让大家看清楚HTML结构

复制代码 代码如下:

html = 'Page title

This is paragraphone.

This is paragraphtwo.



初始化如下:
复制代码 代码如下:

soup = BeautifulSoup(html) 

我们知道HTML代码可以看成一棵树,这个操作等于是把HTML代码解析成一种树型的数据结构并存储在soup中,注意这个数据结构的根节点不是,而是soup,其中html标签是soup的唯一子节点,不信你试试下面的操作
复制代码 代码如下:

print soup 
print soup.contents[0] 
print soup.contents[1] 

前两个输出结果是一致的,就是整个html文档,第三条输出报错IndexError: list index out of range

查找节点

查找节点有两种反回形式,一种是返回单个节点,一种是返回节点list,对应的查找函数分别为find和findAll

单个节点

1.根据节点名

复制代码 代码如下:

## 查找head节点 
print soup.find('head') ## 输出为Page title 
## or 
## head = soup.head 

这种方式查找到的是待查找节点最近的节点,比如这里待查找节点是soup,这里找到的是离soup最近的一个head(如果有多个的话)

2.根据属性

复制代码 代码如下:

## 查找id属性为firstpara的节点 
print soup.find(attrs={'id':'firstpara'})   
## 输出为

This is paragraphone.

 
## 也可节点名和属性进行组合 
print soup.find('p', attrs={'id':'firstpara'})  ## 输出同上

3.根据节点关系

节点关系无非就是兄弟节点,父子节点这样的

复制代码 代码如下:

p1 = soup.find(attrs={'id':'firstpara'}) ## 得到第一个p节点 
print p1.nextSibling ## 下一个兄弟节点 
## 输出

This is paragraphtwo.

 
p2 = soup.find(attrs={'id':'secondpara'}) ## 得到第二个p节点 
print p2.previousSibling ## 上一个兄弟节点 
## 输出

This is paragraphone.

 
print p2.parent ## 父节点,输出太长这里省略部分 ... 
print p2.contents[0] ## 第一个子节点,输出u'This is paragraph'

多个节点

将上面介绍的find改为findAll即可返回查找到的节点列表,所需参数都是一致的

1.根据节点名

复制代码 代码如下:

## 查找所有p节点 
soup.findAll('p')

2.根据属性查找
复制代码 代码如下:

## 查找id=firstpara的所有节点 
soup.findAll(attrs={'id':'firstpara'}) 

需要注意的是,虽然在这个例子中只找到一个节点,但返回的仍是一个列表对象

上面的这些基本查找功能已经可以应付大多数情况,如果需要各个高级的查找,比如正则式,可以去看官方文档

获取文本

getText方法可以获取节点下的所有文本,其中可以传递一个字符参数,用来分割每个各节点之间的文本

复制代码 代码如下:

## 获取head节点下的文本 
soup.head.getText()         ## u'Page title' 
## or 
soup.head.text 
## 获取body下的所有文本并以\n分割 
soup.body.getText('\n')     ## u'This is paragraph\none\n.\nThis is paragraph\ntwo\n.' 

实战

有了这些功能,文章开头给出的那个Demo就好做了,我们再来回顾下豆瓣的这个页面
http://movie.douban.com/tag/%E5%96%9C%E5%89%A7
如果要得到评分前100的所有电影,对这个页面需要提取两个信息:1、翻页链接;2、每部电影的信息(外链,图片,评分、简介、标题等)
当我们提取到所有电影的信息后再按评分进行排序,选出最高的即可,这里贴出翻页提取和电影信息提取的代码

复制代码 代码如下:

## filename: Grab.py 
from BeautifulSoup import BeautifulSoup, Tag 
import urllib2 
import re 
from Log import LOG 
 
def LOG(*argv): 
    sys.stderr.write(*argv) 
    sys.stderr.write('\n') 
 
class Grab(): 
    url = '' 
    soup = None 
    def GetPage(self, url): 
        if url.find('http://',0,7) != 0: 
            url = 'http://' + url 
        self.url = url 
        LOG('input url is: %s' % self.url) 
        req = urllib2.Request(url, headers={'User-Agent' : "Magic Browser"}) 
        try: 
            page = urllib2.urlopen(req) 
        except: 
            return 
        return page.read()   
 
    def ExtractInfo(self,buf): 
        if not self.soup: 
            try: 
                self.soup = BeautifulSoup(buf) 
            except: 
                LOG('soup failed in ExtractInfo :%s' % self.url) 
            return 
        try: 
            items = self.soup.findAll(attrs={'class':'item'}) 
        except: 
            LOG('failed on find items:%s' % self.url) 
            return 
        links = [] 
        objs = []  
        titles = [] 
        scores = [] 
        comments = [] 
        intros = [] 
        for item in items: 
            try: 
                pic = item.find(attrs={'class':'nbg'}) 
                link = pic['href'] 
                obj = pic.img['src'] 
                info = item.find(attrs={'class':'pl2'}) 
                title = re.sub('[ \t]+',' ',info.a.getText().replace(' ','').replace('\n','')) 
                star = info.find(attrs={'class':'star clearfix'}) 
                score = star.find(attrs={'class':'rating_nums'}).getText().replace(' ','') 
                comment = star.find(attrs={'class':'pl'}).getText().replace(' ','') 
                intro = info.find(attrs={'class':'pl'}).getText().replace(' ','') 
            except Exception,e: 
                LOG('process error in ExtractInfo: %s' % self.url) 
                continue 
            links.append(link) 
            objs.append(obj) 
            titles.append(title)     
            scores.append(score) 
            comments.append(comment) 
            intros.append(intro) 
        return(links, objs, titles, scores, comments, intros) 
 
    def ExtractPageTurning(self,buf): 
        links = set([]) 
        if not self.soup: 
            try: 
                self.soup = BeautifulSoup(buf) 
            except: 
                LOG('soup failed in ExtractPageTurning:%s' % self.url) 
                return 
        try: 
            pageturning = self.soup.find(attrs={'class':'paginator'}) 
            a_nodes = pageturning.findAll('a') 
            for a_node in a_nodes: 
                href = a_node['href'] 
                if href.find('http://',0,7) == -1: 
                    href = self.url.split('?')[0] + href 
                links.add(href) 
        except: 
            LOG('get pageturning failed in ExtractPageTurning:%s' % self.url) 
 
        return links 
 
    def Destroy(self): 
        del self.soup 
        self.soup = None 

接着我们再来写个测试样例

复制代码 代码如下:

## filename: test.py 
#encoding: utf-8 
from Grab import Grab 
import sys 
reload(sys) 
sys.setdefaultencoding('utf-8') 
 
grab = Grab() 
buf = grab.GetPage('http://movie.douban.com/tag/喜剧?start=160&type=T') 
if not buf: 
        print 'GetPage failed!' 
        sys.exit() 
links, objs, titles, scores, comments, intros = grab.ExtractInfo(buf) 
for link, obj, title, score, comment, intro in zip(links, objs, titles, scores, comments, intros): 
        print link+'\t'+obj+'\t'+title+'\t'+score+'\t'+comment+'\t'+intro 
pageturning = grab.ExtractPageTurning(buf) 
for link in pageturning: 
        print link 
grab.Destroy() 

OK,完成这一步接下来的事儿就自个看着办吧
本文只是介绍了BeautifulSoup的皮毛而已,目的是为了让大家快速学会一些基本要领,想当初我要用什么功能都是去BeautifulSoup的源代码里一个函数一个函数看然后才会的,一把辛酸泪啊,所以希望后来者能够通过更便捷的方式去掌握一些基本功能,也不枉我一字一句敲出这篇文章,尤其是这些代码的排版,真是伤透了脑筋

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonを使用した科学コンピューティングでアレイはどのように使用されていますか?Pythonを使用した科学コンピューティングでアレイはどのように使用されていますか?Apr 25, 2025 am 12:28 AM

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

同じシステムで異なるPythonバージョンをどのように処理しますか?同じシステムで異なるPythonバージョンをどのように処理しますか?Apr 25, 2025 am 12:24 AM

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

標準のPythonアレイでnumpyアレイを使用することの利点は何ですか?標準のPythonアレイでnumpyアレイを使用することの利点は何ですか?Apr 25, 2025 am 12:21 AM

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、

アレイの均質な性質はパフォーマンスにどのように影響しますか?アレイの均質な性質はパフォーマンスにどのように影響しますか?Apr 25, 2025 am 12:13 AM

パフォーマンスに対する配列の均一性の影響は二重です。1)均一性により、コンパイラはメモリアクセスを最適化し、パフォーマンスを改善できます。 2)しかし、タイプの多様性を制限し、それが非効率につながる可能性があります。要するに、適切なデータ構造を選択することが重要です。

実行可能なPythonスクリプトを作成するためのベストプラクティスは何ですか?実行可能なPythonスクリプトを作成するためのベストプラクティスは何ですか?Apr 25, 2025 am 12:11 AM

craftexecutablepythonscripts、次のようになります

numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?Apr 24, 2025 pm 03:53 PM

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Apr 24, 2025 pm 03:49 PM

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

CTypesモジュールは、Pythonの配列にどのように関連していますか?CTypesモジュールは、Pythonの配列にどのように関連していますか?Apr 24, 2025 pm 03:45 PM

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。