flask中的sqlalchemy 相比于sqlalchemy封装的更加彻底一些 , 在一些方法上更简单
首先import类库:
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy</span>
然后,需要加载 数据库路径
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">mysqlname='<span style="color: rgb(230, 219, 116); font-family: 'Source Code Pro'; font-size: 13pt; background-color: rgb(39, 40, 34);">mysql://user:passwd@127.0.0.1/student?charset=utf8</span>'</span>
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = mysqlname db = SQLAlchemy(app)</span>
通过前面两步 ,我们已经让flask和数据库联系到了一起
下面我们要把 flask和具体的表联系在一起、
这样建立一个model模型
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">class User(db.Model): """存储 每种报警类型的数量 , 以 分钟 为单位进行统计 :param source: string ,报警来源 :param network_logic_area: string ,该报警所属的逻辑网络区域 :param start_time: datetime , 报警发生时间 """ __tablename__ = 'hello' id = db.Column(db.Integer , primary_key = True) source = db.Column(db.String(255) ) network_logic_area = db.Column(db.String(255) ) start_time = db.Column(db.DateTime) count = db.Column(db.Integer) def __init__(self , source , network_logic_area , start_time , count): self.source = source self.network_logic_area = network_logic_area self.start_time = start_time self.count = count def alter(self): self.count += 1;</span>
上面这个代码,就让falsk和具体的表hello联系在了一起
在这个类中 ,我们首先要指定表,然后把这个表中的列都列出来,最后定义一个 初始化函数 , 让后面插入数据使用
现在开始具体的数据库操作:
1、insert
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;"> p = User(........) db.session.add(p) db.session.commit()</span>
通过 类User构造了一条数据
2、find
用主键获取数据:
Code example:
User.query.get(1) <User u'admin'>
通过一个精确参数进行反查:
Code example:
peter = User.query.filter_by(username='peter').first() #注意:精确查询函数query.filter_by(),是通过传递参数进行查询;其他增强型查询函数是query.filter(),通过传递表达式进行查询。 print(peter.id) #如果数据不存在则返回None
模糊查询:
Code example:
User.query.filter(User.email.endswith('@example.com')).all() [<User u'admin'>, <User u'guest'>]
逻辑非1:
Code example:
peter = User.query.filter(User.username != 'peter').first() print(peter.id)
逻辑非2:
Code example:
from sqlalchemy import not_ peter = User.query.filter(not_(User.username=='peter')).first() print(peter.id)
逻辑与:
Code example:
from sqlalchemy import and_ peter = User.query.filter(and_(User.username=='peter', User.email.endswith('@example.com'))).first() print(peter.id)
逻辑或:
Code example:
from sqlalchemy import or_ peter = User.query.filter(or_(User.username != 'peter', User.email.endswith('@example.com'))).first() print(peter.id)
filter_by:这个里面只能放具体放入条件,不能放一个复杂的计算 ,
filter: 这个里面可以放一些复杂的计算
.first:取第一条数据
.all:取出所有数据
还有一个其他的方法,可以进行排序、计数之类的操作
3、使用sql语句
可以通过 前面构造的 db 直接使用sql的原生语句
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">insert_table.db.engine.execute(' ..... ')</span>
4、delete
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">me = User(........)</span>
在CODE上查看代码片派生到我的代码片
<span style="font-size:18px;">db.session.delete(me) db.session.commit()</span>
5、更新数据
Code example: u = User.query.first() u.username = 'guest' #更新数据和变量赋值那么简单,但必须是通过查询返回的对象。 db.session.commit()

slicingapythonlistisdoneusingtheyntaxlist [start:stop:step] .hore'showitworks:1)startisthe indexofthefirstelementtoinclude.2)spotisthe indexofthefirmenttoeexclude.3)staptistheincrementbetbetinelements

numpyallows forvariousoperationsonarrays:1)basicarithmeticlikeaddition、減算、乗算、および分割; 2)AdvancedperationssuchasmatrixMultiplication;

Arraysinpython、特にnumpyandpandas、aresentialfordataanalysis、offeringspeedandeficiency.1)numpyarraysenable numpyarraysenable handling forlaredatasents andcomplexoperationslikemoverages.2)Pandasextendsnumpy'scapabivitieswithdataframesfortruc

listsandnumpyarraysinpythonhavedifferentmemoryfootprints:listsaremoreflexiblellessmemory-efficient、whileenumpyarraysaraysareoptimizedfornumericaldata.1)listsstorereferencesto objects、with whowedaround64byteson64-bitedatigu

toensurepythonscriptsbehaveCorrectlyAcrossDevelosment、staging、and Production、usetheseStrategies:1)環境variablesforsimplestetings、2)configurationfilesforcomplexsetups、and3)dynamicloadingforadaptability.eachtododododododofersuniquebentandrequiresca

Pythonリストスライスの基本的な構文はリストです[start:stop:step]。 1.STARTは最初の要素インデックス、2。ストップは除外された最初の要素インデックスであり、3.ステップは要素間のステップサイズを決定します。スライスは、データを抽出するためだけでなく、リストを変更および反転させるためにも使用されます。

ListSoutPerformArraysIn:1)ダイナミシジョンアンドフレーケンティオン/削除、2)ストーリングヘテロゼンダタ、および3)メモリ効率の装飾、ButmayhaveslightPerformancostsinceNASOPERATIONS。

toconvertapythonarraytoalist、usetheList()constructororageneratorexpression.1)importhearraymoduleandcreateanarray.2)useList(arr)または[xforxinarr] toconvertoalistは、largedatatessを変えることを伴うものです。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 中国語版
中国語版、とても使いやすい

Dreamweaver Mac版
ビジュアル Web 開発ツール

ホットトピック









