有个excle表格需要做一些过滤然后写入数据库中,但是日期类型的cell取出来是个数字,于是查询了下解决的办法。
基本的代码结构
data = xlrd.open_workbook(EXCEL_PATH)
table = data.sheet_by_index(0)
lines = table.nrows
cols = table.ncols
print u'The total line is %s, cols is %s'%(lines, cols)
读取某个单元格:
table.cell(x, y).value
x:行
y:列
行,列都是从0开始
* 时间类型的转换,把excel中时间转成python 时间(两种方式)
excel某个单元格 2014/7/8
xlrd.xldate_as_tuple(table.cell(2,2).value, 0) #转化为元组形式
(2014, 7, 8, 0, 0, 0)
xlrd.xldate.xldate_as_datetime(table.cell(2,2).value, 1) #直接转化为datetime对象
datetime.datetime(2018, 7, 9, 0, 0)
table.cell(2,2).value #没有转化
41828.0
源码查看:
# @param xldate The Excel number
# @param datemode 0: 1900-based, 1: 1904-based.
xldate_as_tuple(xldate, datemode)
输入一个日期类型的单元格会返回一个时间结构组成的元组,可以根据这个元组组成时间类型
datemode 有2个选项基本我们都会使用1900为基础的时间戳
##
# Convert an Excel date/time number into a datetime.datetime object.
#
# @param xldate The Excel number
# @param datemode 0: 1900-based, 1: 1904-based.
#
# @return a datetime.datetime() object.
#
def xldate_as_datetime(xldate, datemode)
输入参数和上面的相同,但是返回值是一个datetime类型,就不需要在自己转换了
当然这两个函数都有相应的逆函数,把python类型变成相应的excle时间类型。

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo

Inpython、「リスト」は、「リスト」、自由主義的なもの、samememory効率が高く、均質な偶然の瞬間の想起された「アレイ」の「アレイ」の「アレイ」の均質な偶発的な想起されたものです

pythonlistsandarraysaraybothmutable.1)listsareflexibleandsupportheTeterdatabutarlessmemory-efficient.2)Arraysaremorememory-efficientiant forhomogeneousdative、ressivelessatile、ressing comerttytytypecodeusageodoavoiderorors。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

WebStorm Mac版
便利なJavaScript開発ツール

ホットトピック









