検索

几乎所有的微薄都提供了缩短网址的服务,其原理就是将一个url地址按照一定的算法生成一段字符串,然后加在一个短域名后面边成了一个新的url地址,数据库中会存放这个短地址和原始的地址,当用户点击这个新的短地址后,短地址服务会根据短域名后面的几个字符串从数据库中读出原来的地址然后页面进行跳转 。

比如新浪微薄中的url 是 http://t.cn/xxxxxxx  t.cn是其域名 ,其后面跟着的是7位算出来的字符串。
方法一:使用哈希库自定义算法

因为文本中显示太长的url会比较乱,或者采用省略显示的方式,或者采用短url的方式.

为了同时方便统计点击数以及进行内容过滤.实现了一个生成短url值的方法.

为了防止你的hash值被破解,可以在生成md5值的时候加入你自己的salt.

这样即便直到你的code_map也不能破解到原始url了.

为了让结果更加随机,把每次循环没有使用的第二个bit保存到e里面.这样可以让结果冲突率更小.

#引入哈希库
import hashlib 
    
def get_md5(s): 
  s = s.encode('utf8') if isinstance(s, unicode) else s 
  m = hashlib.md5() 
  m.update(s) 
  return m.hexdigest() 
    
code_map = ( 
      'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 
      'i' , 'j' , 'k' , 'l' , 'm' , 'n' , 'o' , 'p' , 
      'q' , 'r' , 's' , 't' , 'u' , 'v' , 'w' , 'x' , 
      'y' , 'z' , '0' , '1' , '2' , '3' , '4' , '5' , 
      '6' , '7' , '8' , '9' , 'A' , 'B' , 'C' , 'D' , 
      'E' , 'F' , 'G' , 'H' , 'I' , 'J' , 'K' , 'L' , 
      'M' , 'N' , 'O' , 'P' , 'Q' , 'R' , 'S' , 'T' , 
      'U' , 'V' , 'W' , 'X' , 'Y' , 'Z'
      ) 
    
    
def get_hash_key(long_url): 
  hkeys = [] 
  hex = get_md5(long_url) 
  for i in xrange(0, 4): 
    n = int(hex[i*8:(i+1)*8], 16) 
    v = [] 
    e = 0
    for j in xrange(0, 5): 
      x = 0x0000003D & n 
      e |= ((0x00000002 & n ) >> 1) << j 
      v.insert(0, code_map[x]) 
      n = n >> 6
    e |= n << 5
    v.insert(0, code_map[e & 0x0000003D]) 
    hkeys.append(''.join(v)) 
  return hkeys 
    
if __name__ == '__main__': 
  print get_hash_key('http://www.pythontab.com')

方法二:使用libsurl库

libsurl 是一个用来生成短URL的C和Python库,支持 bit.ly 和 tinyurl 等短url 服务网站。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
numpyを使用してマルチディメンシャルアレイをどのように作成しますか?numpyを使用してマルチディメンシャルアレイをどのように作成しますか?Apr 29, 2025 am 12:27 AM

Numpyを使用して多次元配列を作成すると、次の手順を通じて実現できます。1)numpy.array()関数を使用して、np.array([[1,2,3]、[4,5,6]])などの配列を作成して2D配列を作成します。 2)np.zeros()、np.ones()、np.random.random()およびその他の関数を使用して、特定の値で満たされた配列を作成します。 3)アレイの形状とサイズの特性を理解して、サブアレイの長さが一貫していることを確認し、エラーを回避します。 4)np.reshape()関数を使用して、配列の形状を変更します。 5)コードが明確で効率的であることを確認するために、メモリの使用に注意してください。

Numpyアレイの「ブロードキャスト」の概念を説明します。Numpyアレイの「ブロードキャスト」の概念を説明します。Apr 29, 2025 am 12:23 AM

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

データストレージ用のリスト、array.array、およびnumpy配列を選択する方法を説明します。データストレージ用のリスト、array.array、およびnumpy配列を選択する方法を説明します。Apr 29, 2025 am 12:20 AM

Forpythondatastorage、chooseLists forfficability withmixeddatypes、array.arrayformemory-efficienthogeneousnumericaldata、およびnumpyArrays foradvancednumericalcomputing.listSareversatilebuteficient efficient forlargeNumericaldatates;

Pythonリストを使用することが配列を使用するよりも適切であるシナリオの例を挙げてください。Pythonリストを使用することが配列を使用するよりも適切であるシナリオの例を挙げてください。Apr 29, 2025 am 12:17 AM

pythonlistsarebetterthanarrays formangingdiversedatypes.1)listscanholdelementsofdifferenttypes、2)adearedditionsandremovals、3)theeofferintutiveoperation likeslicing、but4)theearlessememory-effice-hemory-hemory-hemory-hemory-hemory-adlower-dslorededatas。

Pythonアレイ内の要素にどのようにアクセスしますか?Pythonアレイ内の要素にどのようにアクセスしますか?Apr 29, 2025 am 12:11 AM

toaccesselementsinapythonarray、useindexing:my_array [2] Accessesthirderement、Returning3.pythonuseszero basedIndexing.1)usepositiveandnegativeindexing:my_list [0] forteefirstelement、my_list [-1] exterarast.2)

Pythonでタプルの理解が可能ですか?はいの場合、どうしてそうでない場合は?Pythonでタプルの理解が可能ですか?はいの場合、どうしてそうでない場合は?Apr 28, 2025 pm 04:34 PM

記事では、構文のあいまいさのためにPythonにおけるタプル理解の不可能性について説明します。 Tupple式を使用してTuple()を使用するなどの代替は、Tuppleを効率的に作成するためにお勧めします。(159文字)

Pythonのモジュールとパッケージとは何ですか?Pythonのモジュールとパッケージとは何ですか?Apr 28, 2025 pm 04:33 PM

この記事では、Pythonのモジュールとパッケージ、その違い、および使用について説明しています。モジュールは単一のファイルであり、パッケージは__init__.pyファイルを備えたディレクトリであり、関連するモジュールを階層的に整理します。

PythonのDocstringとは何ですか?PythonのDocstringとは何ですか?Apr 28, 2025 pm 04:30 PM

記事では、PythonのDocstrings、それらの使用、および利点について説明します。主な問題:コードのドキュメントとアクセシビリティに関するドキュストリングの重要性。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境