元组是不可变的Python对象序列。元组的序列就像列表。唯一的区别是,元组不能被改变,即元组是不可被修改。元组使用小括号,而列表使用方括号。
创建一个元组很简单,只要把不同的逗号分隔值,可以把括号中的这些逗号来分隔每个值。例如:
tup1 = ('physics', 'chemistry', 1997, 2000); tup2 = (1, 2, 3, 4, 5 ); tup3 = "a", "b", "c", "d";
空的元组写为含有两对称括号:
tup1 = ();
要元组中包含一个值,必须有一个逗号,即使只有一个值的元组:
tup1 = (50,);
如字符串索引,元组索引从0开始,元组可以切片,联接等。
访问元组的值:
要访问元组的值,使用方括号沿切片及索引或索引来获得可用的索引对应的值。下面是一个简单的例子:
#!/usr/bin/python tup1 = ('physics', 'chemistry', 1997, 2000); tup2 = (1, 2, 3, 4, 5, 6, 7 ); print "tup1[0]: ", tup1[0] print "tup2[1:5]: ", tup2[1:5]
当执行上面的代码,产生以下结果:
tup1[0]: physics tup2[1:5]: [2, 3, 4, 5]
更新元组:
元组是不可变的,这意味着不能更新或更改元组元素的值。但可以利用现有的元组的部分来创建新的元组,如下例所示:
#!/usr/bin/python tup1 = (12, 34.56); tup2 = ('abc', 'xyz'); # Following action is not valid for tuples # tup1[0] = 100; # So let's create a new tuple as follows tup3 = tup1 + tup2; print tup3;
当执行上面的代码,产生以下结果:
(12, 34.56, 'abc', 'xyz')
删除的元组元素:
除去各个元组的元素是不可能的。当然,一个元组与丢弃不想要的元素放在一起没有错。
要明确地删除整个元组,只要使用del语句。下面是一个简单的例子:
#!/usr/bin/python tup = ('physics', 'chemistry', 1997, 2000, hema); print tup; del tup; print "After deleting tup : " print tup;
这将产生以下结果。注意引发异常,这是因为经过del tup元组就不存在了:
('physics', 'chemistry', 1997, 2000) After deleting tup : Traceback (most recent call last): File "test.py", line 9, in <module> print tup; NameError: name 'tup' is not defined
元组的基本操作:
元组的 + 和 * 运算符回应就像字符串中一样; 他们串联和重复功能在这里也一样,不同的是,结果是一个新的记录,而不是字符串。
实际上,元组响应所有我们使用在现有章字符串的一般操作顺序:
索引,切片和矩阵:
因为元组序列,索引和切片与字符串的工作方式相同。假设下面输入:
L = ('spam', 'Spam', 'SPAM!')
无封闭分隔符:
任何一组多个对象,以逗号分隔,不写识别符号,即括号内的列表,括号中的元组等,默认为元组,在下面这个短短的例子说明:
#!/usr/bin/python print 'abc', -4.24e93, 18+6.6j, 'xyz'; x, y = 1, 2; print "Value of x , y : ", x,y;
当执行上面的代码,产生以下结果:
abc -4.24e+93 (18+6.6j) xyz Value of x , y : 1 2

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

Dreamweaver Mac版
ビジュアル Web 開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。
