検索
ホームページバックエンド開発Python チュートリアルPython中的列表生成式与生成器学习教程

列表生成式
即创建列表的方式,最笨的方法就是写循环逐个生成,前面也介绍过可以使用range()函数来生成,不过只能生成线性列表,下面看看更为高级的生成方式:

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
你甚至可以在后面加上if判断:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

循环嵌套,全排列:

>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

看一个简单应用,列出当前目录下所有文件和目录:

>>> import os
>>> [d for d in os.listdir('.')]
['README.md', '.git', 'image', 'os', 'lib', 'sublime-imfix', 'src']

前面也说过Python里循环中可以同时引用两个变量,所以生成变量也可以:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.iteritems()]
['y=B', 'x=A', 'z=C']

也可以通过一个list生成另一个list,例如把一个list中所有字符串变为小写:

>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']

但是这里有个问题,list中如果有其他非字符串类型,那么lower()会报错,解决办法:

>>> L = ['Hello', 'World', 'IBM', 'Apple', 12, 34]
>>> [s.lower() if isinstance(s,str) else s for s in L]
['hello', 'world', 'ibm', 'apple', 12, 34]

此外,列表生成式还有许多神奇用法,说明请看注释:

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
 
list(range(1, 11)) 
 
# 生成1乘1,2乘2...10乘10 
L = [] 
for x in range(1, 11): 
  L.append(x * x) 
 
# 上面太麻烦,看下面 
[x * x for x in range(1, 11)] 
# [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 
 
# 加上if,就可以筛选出仅偶数的平方 
[x * x for x in range(1, 11) if x % 2 == 0] 
# [4, 16, 36, 64, 100] 
 
# 两层循环,可以生成全排列 
[m + n for m in 'ABC' for n in 'XYZ'] 
# ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ'] 
 
# 列出当前目录下的所有文件和目录名 
import os 
[d for d in os.listdir('.')] # on.listdir可以列出文件和目录 
 
# 列表生成式也可以使用两个变量来生成list: 
d = {'x': 'A', 'y': 'B', 'z': 'C'} 
[k + '=' + v for k, v in d.items()] 
# ['x=A', 'z=C', 'y=B'] 
 
# 把一个list中所有的字符串变成小写 
L = ['Hello', 'World', 'IBM', 'Apple'] 
[s.lower() for s in L] 
# ['hello', 'world', 'ibm', 'apple'] 
 
L1 = ['Hello', 'World', 18, 'Apple', None] 
L2 = [s.lower() for s in L1 if isinstance(s, str)] 
print(L2) 
# ['hello', 'world', 'apple'] 
# isinstance函数可以判断一个变量是不是字符串 

生成器
列表生成式虽然强大,但是也会有一个问题,当我们想生成一个很大的列表时,会非常耗时,并且占用很大的存储空间,关键是这里面的元素可能你只需要用到前面很少的一部分,大部分的空间和时间都浪费了。Python提供了一种边计算边使用的机制,称为生成器(Generator),创建一个Generator最简单的方法就是把[]改为():

>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x7fe73eb85cd0>

如果要一个一个打印出来,可以通过generator的next()方法:

>>> g.next()
0
>>> g.next()
1
>>> g.next()
4
>>> g.next()
9
>>> g.next()
16
>>> g.next()
25
>>> g.next()
36
>>> g.next()
49
>>> g.next()
64
>>> g.next()
81
>>> g.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

其实generator object也是可迭代的,所以可以用循环打印,还不会报错。

>>> g = (x * x for x in range(10))
>>> for n in g:
...   print n
...

这是简单的推算算法,但是如果算法比较复杂,写在()里就不太合适了,我们可以换一种方式,使用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
  n, a, b = 0, 0, 1
  while n < max:
    print b
    a, b = b, a + b
    n = n + 1

上面的函数可以输出斐波那契数列的前N个数,这个也是通过前面的数推算出后面的,所以可以把函数变成generator object,只需要把print b改为yield b即可。

def fib(max):
  n, a, b = 0, 0, 1
  while n < max:
    yield b
    a, b = b, a + b
    n = n + 1

如果一个函数定义中包含了yield关键字,这个函数就不在是普通函数,而是一个generator object。

>>> fib(6)
<generator object fib at 0x7fa1c3fcdaf0>
>>> fib(6).next()
1

所以要想调用这个函数,需要使用next()函数,并且遇到yield语句返回(可以把yield理解为return):

def odd():
  print 'step 1'
  yield 1
  print 'step 2'
  yield 3
  print 'step 3'
  yield 5

看看调用输出结果:

>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5
>>> o.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

同样也可以改为for循环语句输出。例如:

def odd():
  print 'step 1'
  yield 1
  print 'step 2'
  yield 2
  print 'step 3'
  yield 3

if __name__ == '__main__':
  o = odd()
  while True:
    try:
      print o.next()
    except:
      break

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:曲線と使いやすさの学習Python vs. C:曲線と使いやすさの学習Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Python vs. C:メモリ管理とコントロールPython vs. C:メモリ管理とコントロールApr 19, 2025 am 12:17 AM

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングのためのPython:詳細な外観科学コンピューティングのためのPython:詳細な外観Apr 19, 2025 am 12:15 AM

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonとC:適切なツールを見つけるPythonとC:適切なツールを見つけるApr 19, 2025 am 12:04 AM

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

データサイエンスと機械学習のためのPythonデータサイエンスと機械学習のためのPythonApr 19, 2025 am 12:02 AM

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonの学習:2時間の毎日の研究で十分ですか?Pythonの学習:2時間の毎日の研究で十分ですか?Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発用のPython:主要なアプリケーションWeb開発用のPython:主要なアプリケーションApr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Python vs. C:パフォーマンスと効率の探索Python vs. C:パフォーマンスと効率の探索Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境