先来回顾一下Python中遍历字典的一些基本方法:
脚本:
#!/usr/bin/python dict={"a":"apple","b":"banana","o":"orange"} print "##########dict######################" for i in dict: print "dict[%s]=" % i,dict[i] print "###########items#####################" for (k,v) in dict.items(): print "dict[%s]=" % k,v print "###########iteritems#################" for k,v in dict.iteritems(): print "dict[%s]=" % k,v print "###########iterkeys,itervalues#######" for k,v in zip(dict.iterkeys(),dict.itervalues()): print "dict[%s]=" % k,v
执行结果:
##########dict###################### dict[a]= apple dict[b]= banana dict[o]= orange ###########items##################### dict[a]= apple dict[b]= banana dict[o]= orange ###########iteritems################# dict[a]= apple dict[b]= banana dict[o]= orange ###########iterkeys,itervalues####### dict[a]= apple dict[b]= banana dict[o]= orange
嗯,然后我们进入“正题”--
一段关于Python字典遍历的“争论”....
先摘抄下:
#这里初始化一个dict >>> d = {'a':1, 'b':0, 'c':1, 'd':0} #本意是遍历dict,发现元素的值是0的话,就删掉 >>> for k in d: ... if d[k] == 0: ... del(d[k]) ... Traceback (most recent call last): File "<stdin>", line 1, in <module> RuntimeError: dictionary changed size during iteration #结果抛出异常了,两个0的元素,也只删掉一个。 >>> d {'a': 1, 'c': 1, 'd': 0} >>> d = {'a':1, 'b':0, 'c':1, 'd':0} #d.keys() 是一个下标的数组 >>> d.keys() ['a', 'c', 'b', 'd'] #这样遍历,就没问题了,因为其实其实这里遍历的是d.keys()这个list常量。 >>> for k in d.keys(): ... if d[k] == 0: ... del(d[k]) ... >>> d {'a': 1, 'c': 1} #结果也是对的 >>> #这里初始化一个dict >>> d = {'a':1, 'b':0, 'c':1, 'd':0} #本意是遍历dict,发现元素的值是0的话,就删掉 >>> for k in d: ... if d[k] == 0: ... del(d[k]) ... Traceback (most recent call last): File "<stdin>", line 1, in <module> RuntimeError: dictionary changed size during iteration #结果抛出异常了,两个0的元素,也只删掉一个。 >>> d {'a': 1, 'c': 1, 'd': 0} >>> d = {'a':1, 'b':0, 'c':1, 'd':0} #d.keys() 是一个下标的数组 >>> d.keys() ['a', 'c', 'b', 'd'] #这样遍历,就没问题了,因为其实其实这里遍历的是d.keys()这个list常量。 >>> for k in d.keys(): ... if d[k] == 0: ... del(d[k]) ... >>> d {'a': 1, 'c': 1} #结果也是对的 >>>
其实这个问题本来很简单,就是说如果遍历一个字典,但是在遍历中改变了他,比如增删某个元素,就会导致遍历退出,并且抛出一个dictionary changed size during iteration的异常.
解决方法是遍历字典键值,以字典键值为依据遍历,这样改变了value以后不会影响遍历继续。
但是下面又有一位大神抛出高论:
首先,python 是推荐使用迭代器的,也就是 for k in adict 形式。其次,在遍历中删除容器中的元素,在 C++ STL 和 Python 等库中,都是不推荐的,因为这种情况往往说明了你的设计方案有问题,所有都有特殊要求,对应到 python 中,就是要使用 adict.key() 做一个拷贝。最后,所有的 Python 容器都不承诺线程安全,你要多线程做这件事,本身就必须得加锁,这也说明了业务代码设计有问题的.
但由“遍历中删除特定元素”这种特例,得出“遍历dict的时候,养成使用 for k in d.keys() 的习惯”,我觉得有必要纠正一下。在普通的遍历中,应该使用 for k in adict。
另外,对于“遍历中删除元素”这种需求,pythonic 的做法是 adict = {k, v for adict.iteritems() if v != 0} 或 alist = [i for i in alist if i != 0]
这个写法让我眼前一亮:怎么还有这个语法?
再仔细一看,他可能是这个意思:
#!/usr/bin/env python # -*- coding=utf-8 -*- a = {'a':1, 'b':0, 'c':1, 'd':0} b={} for k,v in a.items(): if v != 0: b.update({k:v}) adict = b del b print a #!/usr/bin/env python # -*- coding=utf-8 -*- a = {'a':1, 'b':0, 'c':1, 'd':0} b={} for k,v in a.items(): if v != 0: b.update({k:v}) adict = b del b print a
不知道对不对。
因为这个写法一开始让我猛然想到三元操作符,仔细一看才发现不是,以前Goolge到有个解决方案
val = float(raw_input("Age: ")) status = ("working","retired")[val>65] print "You should be",status val = float(raw_input("Age: ")) status = ("working","retired")[val>65] print "You should be",status
val>65是个逻辑表达式,返回0或者1,刚好作为前面那个元组的ID来取值,实在是太妙了。。。
不过在Google的资料里面还有一个版本
#V1 if X else V2 s = None a = "not null" if s == None else s print a #'not null'
后来发帖在华蟒用户组(中文Python技术邮件列表)中提到后众多大神解答如下:
>>> alist = [1,2,0,3,0,4,5] >>> alist = [i for i in alist if i != 0] >>> alist [1, 2, 3, 4, 5] >>> d = {'a':1, 'b':0, 'c':1, 'd':0} >>> d = dict([(k,v) for k,v in d.iteritems() if v!=0]) >>> d {'a':1,'c':1'}
如果大于Python>=2.7
还可以用这个写法:
>>> d = {k:v for k,v in d.iteritems() if v !=0 }

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonの実際のアプリケーションには、データ分析、Web開発、人工知能、自動化が含まれます。 1)データ分析では、PythonはPandasとMatplotlibを使用してデータを処理および視覚化します。 2)Web開発では、DjangoおよびFlask FrameworksがWebアプリケーションの作成を簡素化します。 3)人工知能の分野では、TensorflowとPytorchがモデルの構築と訓練に使用されます。 4)自動化に関しては、ファイルのコピーなどのタスクにPythonスクリプトを使用できます。

Pythonは、データサイエンス、Web開発、自動化スクリプトフィールドで広く使用されています。 1)データサイエンスでは、PythonはNumpyやPandasなどのライブラリを介してデータ処理と分析を簡素化します。 2)Web開発では、DjangoおよびFlask Frameworksにより、開発者はアプリケーションを迅速に構築できます。 3)自動化されたスクリプトでは、Pythonのシンプルさと標準ライブラリが理想的になります。

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、
