网上有很多的文章教怎么配置MySQL服务器,但考虑到服务器硬件配置的不同,具体应用的差别,那些文章的做法只能作为初步设置参考,我们需要根据自己的情况进行配置优化,好的做法是MySQL服务器稳定运行了一段时间后运行,根据服务器的”状态”进行优化。
mysql> show global status;
可以列出MySQL服务器运行各种状态值,另外,查询MySQL服务器配置信息语句:
mysql> show variables;
一、慢查询
mysql> show variables like ‘%slow%';
+——————+——-+
| Variable_name | Value |
+——————+——-+
| log_slow_queries | ON |
| slow_launch_time | 2 |
+——————+——-+
mysql> show global status like ‘%slow%';
+———————+——-+
| Variable_name | Value |
+———————+——-+
| Slow_launch_threads | 0 |
| Slow_queries | 4148 |
+———————+——-+
配置中打开了记录慢查询,执行时间超过2秒的即为慢查询,系统显示有4148个慢查询,你可以分析慢查询日志,找出有问题的SQL语句,慢查询时间不宜设置过长,否则意义不大,最好在5秒以内,如果你需要微秒级别的慢查询,可以考虑给MySQL打补丁:,记得找对应的版本。
打开慢查询日志可能会对系统性能有一点点影响,如果你的MySQL是主-从结构,可以考虑打开其中一台从服务器的慢查询日志,这样既可以监控慢查询,对系统性能影响又小。
二、连接数
经常会遇见”MySQL: ERROR 1040: Too many connections”的情况,一种是访问量确实很高,MySQL服务器抗不住,这个时候就要考虑增加从服务器分散读压力,另外一种情况是MySQL配置文件中max_connections值过小:
mysql> show variables like ‘max_connections';
+—————–+——-+
| Variable_name | Value |
+—————–+——-+
| max_connections | 256 |
+—————–+——-+
这台MySQL服务器最大连接数是256,然后查询一下服务器响应的最大连接数:
mysql> show global status like ‘Max_used_connections';
+———————-+——-+
| Variable_name | Value |
+———————-+——-+
| Max_used_connections | 245 |
+———————-+——-+
MySQL服务器过去的最大连接数是245,没有达到服务器连接数上限256,应该没有出现1040错误,比较理想的设置是:
Max_used_connections / max_connections * 100% ≈ 85%
最大连接数占上限连接数的85%左右,如果发现比例在10%以下,MySQL服务器连接数上限设置的过高了。
三、Key_buffer_size
key_buffer_size是对MyISAM表性能影响最大的一个参数,下面一台以MyISAM为主要存储引擎服务器的配置:
mysql> show variables like ‘key_buffer_size';
+—————–+————+
| Variable_name | Value |
+—————–+————+
| key_buffer_size | 536870912 |
+—————–+————+
分配了512MB内存给key_buffer_size,我们再看一下key_buffer_size的使用情况:
mysql> show global status like ‘key_read%';
+————————+————-+
| Variable_name | Value |
+————————+————-+
| Key_read_requests | 27813678764 |
| Key_reads | 6798830 |
+————————+————-+
一共有27813678764个索引读取请求,有6798830个请求在内存中没有找到直接从硬盘读取索引,计算索引未命中缓存的概率:
key_cache_miss_rate = Key_reads / Key_read_requests * 100%
比如上面的数据,key_cache_miss_rate为0.0244%,4000个索引读取请求才有一个直接读硬盘,已经很BT 了,key_cache_miss_rate在0.1%以下都很好(每1000个请求有一个直接读硬盘),如果key_cache_miss_rate在 0.01%以下的话,key_buffer_size分配的过多,可以适当减少。
MySQL服务器还提供了key_blocks_*参数:
mysql> show global status like ‘key_blocks_u%';
+————————+————-+
| Variable_name | Value |
+————————+————-+
| Key_blocks_unused | 0 |
| Key_blocks_used | 413543 |
+————————+————-+
Key_blocks_unused表示未使用的缓存簇(blocks)数,Key_blocks_used表示曾经用到的最大的blocks数,比如这台服务器,所有的缓存都用到了,要么增加key_buffer_size,要么就是过渡索引了,把缓存占满了。比较理想的设置:
Key_blocks_used / (Key_blocks_unused + Key_blocks_used) * 100% ≈ 80%
四、临时表
mysql> show global status like ‘created_tmp%';
+————————-+———+
| Variable_name | Value |
+————————-+———+
| Created_tmp_disk_tables | 21197 |
| Created_tmp_files | 58 |
| Created_tmp_tables | 1771587 |
+————————-+———+
每次创建临时表,Created_tmp_tables增加,如果是在磁盘上创建临时表,Created_tmp_disk_tables也增加,Created_tmp_files表示MySQL服务创建的临时文件文件数,比较理想的配置是:
Created_tmp_disk_tables / Created_tmp_tables * 100%
比如上面的服务器Created_tmp_disk_tables / Created_tmp_tables * 100% = 1.20%,应该相当好了。我们再看一下MySQL服务器对临时表的配置:
mysql> show variables where Variable_name in (‘tmp_table_size', ‘max_heap_table_size');
+———————+———–+
| Variable_name | Value |
+———————+———–+
| max_heap_table_size | 268435456 |
| tmp_table_size | 536870912 |
+———————+———–+
只有256MB以下的临时表才能全部放内存,超过的就会用到硬盘临时表。
五、Open Table情况
mysql> show global status like ‘open%tables%';
+—————+——-+
| Variable_name | Value |
+—————+——-+
| Open_tables | 919 |
| Opened_tables | 1951 |
+—————+——-+
Open_tables表示打开表的数量,Opened_tables表示打开过的表数量,如果Opened_tables数量过大,说明配置中 table_cache(5.1.3之后这个值叫做table_open_cache)值可能太小,我们查询一下服务器table_cache值:
mysql> show variables like ‘table_cache';
+—————+——-+
| Variable_name | Value |
+—————+——-+
| table_cache | 2048 |
+—————+——-+
比较合适的值为:
Open_tables / Opened_tables * 100% >= 85%
Open_tables / table_cache * 100%
六、进程使用情况
mysql> show global status like ‘Thread%';
+——————-+——-+
| Variable_name | Value |
+——————-+——-+
| Threads_cached | 46 |
| Threads_connected | 2 |
| Threads_created | 570 |
| Threads_running | 1 |
+——————-+——-+
如果我们在MySQL服务器配置文件中设置了thread_cache_size,当客户端断开之后,服务器处理此客户的线程将会缓存起来以响应下一个客户而不是销毁(前提是缓存数未达上限)。Threads_created表示创建过的线程数,如果发现Threads_created值过大的话,表明MySQL服务器一直在创建线程,这也是比较耗资源,可以适当增加配置文件中thread_cache_size值,查询服务器 thread_cache_size配置:
mysql> show variables like ‘thread_cache_size';
+——————-+——-+
| Variable_name | Value |
+——————-+——-+
| thread_cache_size | 64 |
+——————-+——-+
示例中的服务器还是挺健康的。
七、查询缓存(query cache)
mysql> show global status like ‘qcache%';
+————————-+———–+
| Variable_name | Value |
+————————-+———–+
| Qcache_free_blocks | 22756 |
| Qcache_free_memory | 76764704 |
| Qcache_hits | 213028692 |
| Qcache_inserts | 208894227 |
| Qcache_lowmem_prunes | 4010916 |
| Qcache_not_cached | 13385031 |
| Qcache_queries_in_cache | 43560 |
| Qcache_total_blocks | 111212 |
+————————-+———–+
MySQL查询缓存变量解释:
Qcache_free_blocks:缓存中相邻内存块的个数。数目大说明可能有碎片。FLUSH QUERY CACHE会对缓存中的碎片进行整理,从而得到一个空闲块。
Qcache_free_memory:缓存中的空闲内存。
Qcache_hits:每次查询在缓存中命中时就增大
Qcache_inserts:每次插入一个查询时就增大。命中次数除以插入次数就是不中比率。
Qcache_lowmem_prunes:缓存出现内存不足并且必须要进行清理以便为更多查询提供空间的次数。这个数字最好长时间来看;如果这个数字在不断增长,就表示可能碎片非常严重,或者内存很少。(上面的 free_blocks和free_memory可以告诉您属于哪种情况)
Qcache_not_cached:不适合进行缓存的查询的数量,通常是由于这些查询不是 SELECT 语句或者用了now()之类的函数。
Qcache_queries_in_cache:当前缓存的查询(和响应)的数量。
Qcache_total_blocks:缓存中块的数量。
我们再查询一下服务器关于query_cache的配置:
mysql> show variables like ‘query_cache%';
+——————————+———–+
| Variable_name | Value |
+——————————+———–+
| query_cache_limit | 2097152 |
| query_cache_min_res_unit | 4096 |
| query_cache_size | 203423744 |
| query_cache_type | ON |
| query_cache_wlock_invalidate | OFF |
+——————————+———–+
各字段的解释:
query_cache_limit:超过此大小的查询将不缓存
query_cache_min_res_unit:缓存块的最小大小
query_cache_size:查询缓存大小
query_cache_type:缓存类型,决定缓存什么样的查询,示例中表示不缓存 select sql_no_cache 查询
query_cache_wlock_invalidate:当有其他客户端正在对MyISAM表进行写操作时,如果查询在query cache中,是否返回cache结果还是等写操作完成再读表获取结果。
query_cache_min_res_unit的配置是一柄”双刃剑”,默认是4KB,设置值大对大数据查询有好处,但如果你的查询都是小数据查询,就容易造成内存碎片和浪费。
查询缓存碎片率 = Qcache_free_blocks / Qcache_total_blocks * 100%
如果查询缓存碎片率超过20%,可以用FLUSH QUERY CACHE整理缓存碎片,或者试试减小query_cache_min_res_unit,如果你的查询都是小数据量的话。
查询缓存利用率 = (query_cache_size – Qcache_free_memory) / query_cache_size * 100%
查询缓存利用率在25%以下的话说明query_cache_size设置的过大,可适当减小;查询缓存利用率在80%以上而且Qcache_lowmem_prunes > 50的话说明query_cache_size可能有点小,要不就是碎片太多。
查询缓存命中率 = (Qcache_hits – Qcache_inserts) / Qcache_hits * 100%
示例服务器 查询缓存碎片率 = 20.46%,查询缓存利用率 = 62.26%,查询缓存命中率 = 1.94%,命中率很差,可能写操作比较频繁吧,而且可能有些碎片。
八、排序使用情况
mysql> show global status like ‘sort%';
+——————-+————+
| Variable_name | Value |
+——————-+————+
| Sort_merge_passes | 29 |
| Sort_range | 37432840 |
| Sort_rows | 9178691532 |
| Sort_scan | 1860569 |
+——————-+————+
Sort_merge_passes 包括两步。MySQL 首先会尝试在内存中做排序,使用的内存大小由系统变量 Sort_buffer_size 决定,如果它的大小不够把所有的记录都读到内存中,MySQL 就会把每次在内存中排序的结果存到临时文件中,等 MySQL 找到所有记录之后,再把临时文件中的记录做一次排序。这再次排序就会增加 Sort_merge_passes。实际上,MySQL 会用另一个临时文件来存再次排序的结果,所以通常会看到 Sort_merge_passes 增加的数值是建临时文件数的两倍。因为用到了临时文件,所以速度可能会比较慢,增加 Sort_buffer_size 会减少 Sort_merge_passes 和 创建临时文件的次数。但盲目的增加 Sort_buffer_size 并不一定能提高速度,见 How fast can you sort data with MySQL?(引自,貌似被墙)
另外,增加read_rnd_buffer_size(3.2.3是record_rnd_buffer_size)的值对排序的操作也有一点的好处,参见:
九、文件打开数(open_files)
mysql> show global status like ‘open_files';
+—————+——-+
| Variable_name | Value |
+—————+——-+
| Open_files | 1410 |
+—————+——-+
mysql> show variables like ‘open_files_limit';
+——————+——-+
| Variable_name | Value |
+——————+——-+
| open_files_limit | 4590 |
+——————+——-+
比较合适的设置:Open_files / open_files_limit * 100%
十、表锁情况
mysql> show global status like ‘table_locks%';
+———————–+———–+
| Variable_name | Value |
+———————–+———–+
| Table_locks_immediate | 490206328 |
| Table_locks_waited | 2084912 |
+———————–+———–+
Table_locks_immediate表示立即释放表锁数,Table_locks_waited表示需要等待的表锁数,如果 Table_locks_immediate / Table_locks_waited > 5000,最好采用InnoDB引擎,因为InnoDB是行锁而MyISAM是表锁,对于高并发写入的应用InnoDB效果会好些。示例中的服务器 Table_locks_immediate / Table_locks_waited = 235,MyISAM就足够了。
十一、表扫描情况
mysql> show global status like ‘handler_read%';
+———————–+————-+
| Variable_name | Value |
+———————–+————-+
| Handler_read_first | 5803750 |
| Handler_read_key | 6049319850 |
| Handler_read_next | 94440908210 |
| Handler_read_prev | 34822001724 |
| Handler_read_rnd | 405482605 |
| Handler_read_rnd_next | 18912877839 |
+———————–+————-+
各字段解释参见,调出服务器完成的查询请求次数:
mysql> show global status like ‘com_select';
+—————+———–+
| Variable_name | Value |
+—————+———–+
| Com_select | 222693559 |
+—————+———–+
计算表扫描率:
表扫描率 = Handler_read_rnd_next / Com_select
如果表扫描率超过4000,说明进行了太多表扫描,很有可能索引没有建好,增加read_buffer_size值会有一些好处,但最好不要超过8MB。
本文参考以下网页:
1.http://dev.mysql.com/doc/refman/5.1/en/server-status-variables.htm
2.http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html
3.http://www.ibm.com/developerworks/cn/linux/l-tune-lamp-3.html
4.http://www.day32.com/MySQL/tuning-primer.sh 具体数值主要参考此工具

MySQLデータベースをアップグレードする手順には次のものがあります。1。データベースをバックアップします。2。現在のMySQLサービスを停止します。3。MySQLの新しいバージョンをインストールします。アップグレードプロセス中に互換性の問題が必要であり、Perconatoolkitなどの高度なツールをテストと最適化に使用できます。

MySQLバックアップポリシーには、論理バックアップ、物理バックアップ、増分バックアップ、レプリケーションベースのバックアップ、クラウドバックアップが含まれます。 1. Logical BackupはMySqldumpを使用してデータベースの構造とデータをエクスポートします。これは、小さなデータベースとバージョンの移行に適しています。 2.物理バックアップは、データファイルをコピーすることで高速かつ包括的ですが、データベースの一貫性が必要です。 3.インクリメンタルバックアップは、バイナリロギングを使用して変更を記録します。これは、大規模なデータベースに適しています。 4.レプリケーションベースのバックアップは、サーバーからバックアップすることにより、生産システムへの影響を減らします。 5. Amazonrdsなどのクラウドバックアップは自動化ソリューションを提供しますが、コストと制御を考慮する必要があります。ポリシーを選択するときは、データベースサイズ、ダウンタイム許容度、回復時間、および回復ポイントの目標を考慮する必要があります。

mysqlclusteringenhancesdatabaserobustnessnessnessnessnessnistandistributiondistributingdataacrossmultiplenodes.itesthendbenginefordatareplication andfaulttolerance、保証highavailability.setupinvolvesconfiguringmanagement、data、ssqlnodes、carefulmonitoringringandpe

MySQLのデータベーススキーマ設計の最適化は、次の手順を通じてパフォーマンスを改善できます。1。インデックス最適化:一般的なクエリ列にインデックスを作成し、クエリのオーバーヘッドのバランスをとり、更新を挿入します。 2。テーブル構造の最適化:正規化または反通常化によりデータ冗長性を削減し、アクセス効率を改善します。 3。データ型の選択:Varcharの代わりにINTなどの適切なデータ型を使用して、ストレージスペースを削減します。 4。パーティション化とサブテーブル:大量のデータボリュームの場合、パーティション化とサブテーブルを使用してデータを分散させてクエリとメンテナンスの効率を改善します。

tooptimizemysqlperformance、soflowthesesteps:1)properindexingtospeedupqueries、2)useexplaintoanalyzeandoptimize Queryperformance、3)AductServerContingSettingStingsinginginnodb_buffer_pool_sizeandmax_connections、4)

MySQL関数は、データ処理と計算に使用できます。 1.基本的な使用には、文字列処理、日付計算、数学操作が含まれます。 2。高度な使用法には、複数の関数を組み合わせて複雑な操作を実装することが含まれます。 3.パフォーマンスの最適化では、Where句での機能の使用を回避し、GroupByおよび一時テーブルを使用する必要があります。

MySQLでデータを挿入するための効率的な方法には、次のものが含まれます。1。insertInto ...値構文、2。LoadDatainFileコマンドの使用、3。トランザクション処理の使用、4。バッチサイズの調整、5。Insurtignoreまたは挿入の使用...

MySQLでは、AlterTabletable_nameaddcolumnnew_columnvarchar(255)afterexisting_columnを使用してフィールドを追加し、andtabletable_namedopcolumncolumn_to_dropを使用してフィールドを削除します。フィールドを追加するときは、クエリのパフォーマンスとデータ構造を最適化する場所を指定する必要があります。フィールドを削除する前に、操作が不可逆的であることを確認する必要があります。オンラインDDL、バックアップデータ、テスト環境、および低負荷期間を使用したテーブル構造の変更は、パフォーマンスの最適化とベストプラクティスです。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

ホットトピック









