MongoDB基础理念及操作初探

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBオリジナル
2016-06-07 16:47:23995ブラウズ

MongoDB是一个高性能,开源,无模式的文档型数据库,它在许多场景下可用于替代传统的关系型数据库或键/值存储方式

MongoDB是一个高性能,开源,无模式的文档型数据库,它在许多场景下可用于替代传统的关系型数据库或键/值存储方式

基础概念:

NoSQL

泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。

------------------------------------------------------------------

MongoDB 的详细介绍:请点这里
MongoDB 的下载地址:请点这里

相关阅读:

MongoDB备份与恢复

CentOS编译安装MongoDB

CentOS 编译安装 MongoDB与mongoDB的php扩展

CentOS 6 使用 yum 安装MongoDB及服务器端配置

Ubuntu 13.04下安装MongoDB2.4.3

如何在MongoDB中建立新数据库和集合

MongoDB入门必读(概念与实战并重)

《MongoDB 权威指南》(MongoDB: The Definitive Guide)英文文字版[PDF]

------------------------------------------------------------------

 

NoSQL的特点:

·分关系型

·分布式

·不提供ACID功能

 

本身常用技术特点:

·数据模型非常简单(每个记录只有单独的键

·元数据和应用数据分离

·弱一致性

其优势:

·避免不必要的复杂

对于web应用来讲,有些一致性有些多余,所以最适用于web2.0的应用场景

·高吞吐量

·高 水平扩展和低端硬件集群

·不使用关系型映射(所以使用的模型非常简单)

 

其劣势:

·功能过于简单

·没有统一的数据查询模型

 

NoSQL数据库类别:

·键值存储

·列式数据库

·文档数据库

每一行都相当于独立的文件

·图式数据库

存放的为图,有着复杂对象关系的视图,比如在社交网站存储每个用户之间的关系的时候,通常需要用这种模式进行存储

·缓存数据库系统:不具备存储能力,完全用来提供缓存,比如Memcached、Redis

 

·CAP Therorem

C,A模型:保证一致性和可用性 就是传统数据库-sql数据库

C,P模型:悲观加锁机制(最终一致性 )

A,,P模型:只保证可用性 和分区容忍性 比如DNS

·ACID & BASE

主要评估于系统本身基本的可用能力 软状态 以及能实现最终一致性,分布式集群中一般都使用BASE

 

而数据一致性模型分为以下几种:

·强一致性

无论更新操作在哪个副本上执行,之后的操作都能获得一致性的数据

·弱一致性

用户对某一数据更新需要一定的时间,将由一定的时间段处于不一致状态,在这段时间内为弱一致性

·最终一致性

 

数据一致性的实现技术:

·Quorum系统 NRW策略

N:总的副本数

R:完成度操作所需要读取最少副本数

W:完成写操作所需要写入最少副本数

强制一致性 R+W>N

比如 :mysql一主两从

 

最终一致性 R+W

 

两段式提交协议:2PC

分为两类节点:

·协调者进程

·参与者进程

每个事物都有可能自己去写数据,并实现持久存储,而且节点之间可以任意通信

分为两个阶段:

·请求节点

·提交阶段

每个事物的参与者进程都必须提交数据,再由协调者进程进行协调后得出最终结果才能真正意义往上提交

每个请求议案,都被列为最终议案的一部分

事物协调者将请求发送于参与者使其提交事物,于是参与者统统都提交事物(这个阶段为请求)

协调者收到请求,于是再次通知两者(参与者)使其开始提交事物(提交阶段)

协调者将所有事物进行协调处理并得出最终结果(保持最终一致性)

 

提交失败如何处理:

如果其中以个节点出现故障(不同意提交)那么所有提交事物则全部取消提交操作

 

时间戳策略:

paxos:基于选举策略来选择

 

向量时钟

 

Nosql的数据存储模型:

包含了很多种不同的技术,通常能够根据不同的机制能够把他们分为不同的流派,而最简单的分裂方式就是根据数据存储模型来进行分类

流派:

·键值存储模型:(key-value存储)只能够简单存储键值模型,而且多个键值之间不能组合使用

查找迅速

 

数据无结构,通常指被当做字符串货二进制数据

应用场景:主要实现内容缓存,处理大量数据的高访问负载,也能用户日志系统的日志写入等做内容缓存

实例:redis, Dynamo

 

·列式模型:

数据按列存储,将同一列数据存放在一起(一起可能是同一节点或同一数据集中)

优点:查找迅速因为没有特别复杂的结构模型

可扩展性强

易于实现分布式

缺点:

功能相对有限(相对sql产品来讲)

 

其应用场景:主要用于分布式存储或分布式文件系统等

实例:Bigtable,cassandra,HBase等

 

·文档模型:

数据模型:与键值型模型类似,但是vaule指向结构化数据

声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。