原文档地址:http://kafka.apache.org/documentation.html ############################# System ##############################唯一标识在集群中的ID,要求是正数。broker.id=0#服务端口,默认9092port=9092#监听地址,不设为所有地址host.name=debugo01#
原文档地址:http://kafka.apache.org/documentation.html
############################# System ############################# #唯一标识在集群中的ID,要求是正数。 broker.id=0 #服务端口,默认9092 port=9092 #监听地址,不设为所有地址 host.name=debugo01 # 处理网络请求的最大线程数 num.network.threads=2 # 处理磁盘I/O的线程数 num.io.threads=8 # 一些后台线程数 background.threads = 4 # 等待IO线程处理的请求队列最大数 queued.max.requests = 500 # socket的发送缓冲区(SO_SNDBUF) socket.send.buffer.bytes=1048576 # socket的接收缓冲区 (SO_RCVBUF) socket.receive.buffer.bytes=1048576 # socket请求的最大字节数。为了防止内存溢出,message.max.bytes必然要小于 socket.request.max.bytes = 104857600 ############################# Topic ############################# # 每个topic的分区个数,更多的partition会产生更多的segment file num.partitions=2 # 是否允许自动创建topic ,若是false,就需要通过命令创建topic auto.create.topics.enable =true # 一个topic ,默认分区的replication个数 ,不能大于集群中broker的个数。 default.replication.factor =1 # 消息体的最大大小,单位是字节 message.max.bytes = 1000000 ############################# ZooKeeper ############################# # Zookeeper quorum设置。如果有多个使用逗号分割 zookeeper.connect=debugo01:2181,debugo02,debugo03 # 连接zk的超时时间 zookeeper.connection.timeout.ms=1000000 # ZooKeeper集群中leader和follower之间的同步实际 zookeeper.sync.time.ms = 2000 ############################# Log ############################# #日志存放目录,多个目录使用逗号分割 log.dirs=/var/log/kafka # 当达到下面的消息数量时,会将数据flush到日志文件中。默认10000 #log.flush.interval.messages=10000 # 当达到下面的时间(ms)时,执行一次强制的flush操作。interval.ms和interval.messages无论哪个达到,都会flush。默认3000ms #log.flush.interval.ms=1000 # 检查是否需要将日志flush的时间间隔 log.flush.scheduler.interval.ms = 3000 # 日志清理策略(delete|compact) log.cleanup.policy = delete # 日志保存时间 (hours|minutes),默认为7天(168小时)。超过这个时间会根据policy处理数据。bytes和minutes无论哪个先达到都会触发。 log.retention.hours=168 # 日志数据存储的最大字节数。超过这个时间会根据policy处理数据。 #log.retention.bytes=1073741824 # 控制日志segment文件的大小,超出该大小则追加到一个新的日志segment文件中(-1表示没有限制) log.segment.bytes=536870912 # 当达到下面时间,会强制新建一个segment log.roll.hours = 24*7 # 日志片段文件的检查周期,查看它们是否达到了删除策略的设置(log.retention.hours或log.retention.bytes) log.retention.check.interval.ms=60000 # 是否开启压缩 log.cleaner.enable=false # 对于压缩的日志保留的最长时间 log.cleaner.delete.retention.ms = 1 day # 对于segment日志的索引文件大小限制 log.index.size.max.bytes = 10 * 1024 * 1024 #y索引计算的一个缓冲区,一般不需要设置。 log.index.interval.bytes = 4096 ############################# replica ############################# # partition management controller 与replicas之间通讯的超时时间 controller.socket.timeout.ms = 30000 # controller-to-broker-channels消息队列的尺寸大小 controller.message.queue.size=10 # replicas响应leader的最长等待时间,若是超过这个时间,就将replicas排除在管理之外 replica.lag.time.max.ms = 10000 # 是否允许控制器关闭broker ,若是设置为true,会关闭所有在这个broker上的leader,并转移到其他broker controlled.shutdown.enable = false # 控制器关闭的尝试次数 controlled.shutdown.max.retries = 3 # 每次关闭尝试的时间间隔 controlled.shutdown.retry.backoff.ms = 5000 # 如果relicas落后太多,将会认为此partition relicas已经失效。而一般情况下,因为网络延迟等原因,总会导致replicas中消息同步滞后。如果消息严重滞后,leader将认为此relicas网络延迟较大或者消息吞吐能力有限。在broker数量较少,或者网络不足的环境中,建议提高此值. replica.lag.max.messages = 4000 #leader与relicas的socket超时时间 replica.socket.timeout.ms= 30 * 1000 # leader复制的socket缓存大小 replica.socket.receive.buffer.bytes=64 * 1024 # replicas每次获取数据的最大字节数 replica.fetch.max.bytes = 1024 * 1024 # replicas同leader之间通信的最大等待时间,失败了会重试 replica.fetch.wait.max.ms = 500 # 每一个fetch操作的最小数据尺寸,如果leader中尚未同步的数据不足此值,将会等待直到数据达到这个大小 replica.fetch.min.bytes =1 # leader中进行复制的线程数,增大这个数值会增加relipca的IO num.replica.fetchers = 1 # 每个replica将最高水位进行flush的时间间隔 replica.high.watermark.checkpoint.interval.ms = 5000 # 是否自动平衡broker之间的分配策略 auto.leader.rebalance.enable = false # leader的不平衡比例,若是超过这个数值,会对分区进行重新的平衡 leader.imbalance.per.broker.percentage = 10 # 检查leader是否不平衡的时间间隔 leader.imbalance.check.interval.seconds = 300 # 客户端保留offset信息的最大空间大小 offset.metadata.max.bytes = 1024 #############################Consumer ############################# # Consumer端核心的配置是group.id、zookeeper.connect # 决定该Consumer归属的唯一组ID,By setting the same group id multiple processes indicate that they are all part of the same consumer group. group.id # 消费者的ID,若是没有设置的话,会自增 consumer.id # 一个用于跟踪调查的ID ,最好同group.id相同 client.id = <group_id> # 对于zookeeper集群的指定,必须和broker使用同样的zk配置 zookeeper.connect=debugo01:2182,debugo02:2182,debugo03:2182 # zookeeper的心跳超时时间,查过这个时间就认为是无效的消费者 zookeeper.session.timeout.ms = 6000 # zookeeper的等待连接时间 zookeeper.connection.timeout.ms = 6000 # zookeeper的follower同leader的同步时间 zookeeper.sync.time.ms = 2000 # 当zookeeper中没有初始的offset时,或者超出offset上限时的处理方式 。 # smallest :重置为最小值 # largest:重置为最大值 # anything else:抛出异常给consumer auto.offset.reset = largest # socket的超时时间,实际的超时时间为max.fetch.wait + socket.timeout.ms. socket.timeout.ms= 30 * 1000 # socket的接收缓存空间大小 socket.receive.buffer.bytes=64 * 1024 #从每个分区fetch的消息大小限制 fetch.message.max.bytes = 1024 * 1024 # true时,Consumer会在消费消息后将offset同步到zookeeper,这样当Consumer失败后,新的consumer就能从zookeeper获取最新的offset auto.commit.enable = true # 自动提交的时间间隔 auto.commit.interval.ms = 60 * 1000 # 用于消费的最大数量的消息块缓冲大小,每个块可以等同于fetch.message.max.bytes中数值 queued.max.message.chunks = 10 # 当有新的consumer加入到group时,将尝试reblance,将partitions的消费端迁移到新的consumer中, 该设置是尝试的次数 rebalance.max.retries = 4 # 每次reblance的时间间隔 rebalance.backoff.ms = 2000 # 每次重新选举leader的时间 refresh.leader.backoff.ms # server发送到消费端的最小数据,若是不满足这个数值则会等待直到满足指定大小。默认为1表示立即接收。 fetch.min.bytes = 1 # 若是不满足fetch.min.bytes时,等待消费端请求的最长等待时间 fetch.wait.max.ms = 100 # 如果指定时间内没有新消息可用于消费,就抛出异常,默认-1表示不受限 consumer.timeout.ms = -1 #############################Producer############################# # 核心的配置包括: # metadata.broker.list # request.required.acks # producer.type # serializer.class # 消费者获取消息元信息(topics, partitions and replicas)的地址,配置格式是:host1:port1,host2:port2,也可以在外面设置一个vip metadata.broker.list #消息的确认模式 # 0:不保证消息的到达确认,只管发送,低延迟但是会出现消息的丢失,在某个server失败的情况下,有点像TCP # 1:发送消息,并会等待leader 收到确认后,一定的可靠性 # -1:发送消息,等待leader收到确认,并进行复制操作后,才返回,最高的可靠性 request.required.acks = 0 # 消息发送的最长等待时间 request.timeout.ms = 10000 # socket的缓存大小 send.buffer.bytes=100*1024 # key的序列化方式,若是没有设置,同serializer.class key.serializer.class # 分区的策略,默认是取模 partitioner.class=kafka.producer.DefaultPartitioner # 消息的压缩模式,默认是none,可以有gzip和snappy compression.codec = none # 可以针对默写特定的topic进行压缩 compressed.topics=null # 消息发送失败后的重试次数 message.send.max.retries = 3 # 每次失败后的间隔时间 retry.backoff.ms = 100 # 生产者定时更新topic元信息的时间间隔 ,若是设置为0,那么会在每个消息发送后都去更新数据 topic.metadata.refresh.interval.ms = 600 * 1000 # 用户随意指定,但是不能重复,主要用于跟踪记录消息 client.id="" # 异步模式下缓冲数据的最大时间。例如设置为100则会集合100ms内的消息后发送,这样会提高吞吐量,但是会增加消息发送的延时 queue.buffering.max.ms = 5000 # 异步模式下缓冲的最大消息数,同上 queue.buffering.max.messages = 10000 # 异步模式下,消息进入队列的等待时间。若是设置为0,则消息不等待,如果进入不了队列,则直接被抛弃 queue.enqueue.timeout.ms = -1 # 异步模式下,每次发送的消息数,当queue.buffering.max.messages或queue.buffering.max.ms满足条件之一时producer会触发发送。 batch.num.messages=200</group_id>
其他参考:
http://www.inter12.org/archives/842
原文地址:Kafka主要参数详解, 感谢原作者分享。

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。

MySQLクエリのパフォーマンスが低いことの主な理由には、インデックスの使用、クエリオプティマイザーによる誤った実行計画の選択、不合理なテーブルデザイン、過剰なデータボリューム、ロック競争などがあります。 1.インデックスがゆっくりとクエリを引き起こし、インデックスを追加するとパフォーマンスが大幅に向上する可能性があります。 2。説明コマンドを使用してクエリ計画を分析し、オプティマイザーエラーを見つけます。 3.テーブル構造の再構築と結合条件を最適化すると、テーブルの設計上の問題が改善されます。 4.データボリュームが大きい場合、パーティション化とテーブル分割戦略が採用されます。 5.高い並行性環境では、トランザクションの最適化とロック戦略は、ロック競争を減らすことができます。

データベースの最適化では、クエリ要件に従ってインデックス作成戦略を選択する必要があります。1。クエリに複数の列が含まれ、条件の順序が固定されている場合、複合インデックスを使用します。 2。クエリに複数の列が含まれているが、条件の順序が修正されていない場合、複数の単一列インデックスを使用します。複合インデックスは、マルチコラムクエリの最適化に適していますが、単一列インデックスは単一列クエリに適しています。

MySQLスロークエリを最適化するには、slowquerylogとperformance_schemaを使用する必要があります。1。LowerQueryLogを有効にし、しきい値を設定して、スロークエリを記録します。 2。performance_schemaを使用してクエリの実行の詳細を分析し、パフォーマンスのボトルネックを見つけて最適化します。

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
