大约在两年前,我写了一篇关于MySQL索引的文章。最近有同学在文章的评论中对文章的内容提出质疑,质疑主要集中在联合索引的使用方式上。在那篇文章中,我说明联合索引是将各个索引字段做字符串连接后作为key,使用时将整体做前缀匹配。 而这名同学在这个页面
大约在两年前,我写了一篇关于MySQL索引的文章。最近有同学在文章的评论中对文章的内容提出质疑,质疑主要集中在联合索引的使用方式上。在那篇文章中,我说明联合索引是将各个索引字段做字符串连接后作为key,使用时将整体做前缀匹配。
而这名同学在这个页面找到了如下一句话:index condition pushdown is usually useful with multi-column indexes: the first component(s) is what index access is done for, the subsequent have columns that we read and check conditions on。从而认为联合索引的使用方式与文中不符。
实际上,这个页面所讲述的是在MariaDB 5.3.3(MySQL是在5.6)开始引入的一种叫做Index Condition Pushdown(以下简称ICP)的查询优化方式。由于本身不是一个层面的东西,前文中说的是Index Access,而这里是Query Optimization,所以并不构成对前文正确性的影响。在写前文时,MySQL还没有ICP,所以文中没有涉及相关内容,但考虑到新版本的MariaDB或MySQL中ICP的启用确实影响了一些查询行为的外在表现。所以决定写这篇文章详细讲述一下ICP的原理以及对索引使用方式的优化。
实验
先从一个简单的实验开始直观认识ICP的作用。
安装数据库
首先需要安装一个支持ICP的MariaDB或MySQL数据库。我使用的是MariaDB 5.5.34,如果是使用MySQL则需要5.6版本以上。
Mac环境下可以通过brew安装:
brew install mairadb
其它环境下的安装请参考MariaDB官网关于下载安装的文档。
导入示例数据
与前文一样,我们使用Employees Sample Database,作为示例数据库。完整示例数据库的下载地址为:https://launchpad.net/test-db/employees-db-1/1.0.6/+download/employees_db-full-1.0.6.tar.bz2。
将下载的压缩包解压后,会看到一系列的文件,其中employees.sql就是导入数据的命令文件。执行
mysql -h[host] -u[user] -p <p>就可以完成建库、建表和load数据等一系列操作。此时数据库中会多一个叫做employees的数据库。库中的表如下:</p> <pre class="brush:php;toolbar:false">MariaDB [employees]> SHOW TABLES; +---------------------+ | Tables_in_employees | +---------------------+ | departments | | dept_emp | | dept_manager | | employees | | salaries | | titles | +---------------------+ 6 rows in set (0.00 sec)
我们将使用employees表做实验。
建立联合索引
employees表包含雇员的基本信息,表结构如下:
MariaDB [employees]> DESC employees.employees; +------------+---------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +------------+---------------+------+-----+---------+-------+ | emp_no | int(11) | NO | PRI | NULL | | | birth_date | date | NO | | NULL | | | first_name | varchar(14) | NO | | NULL | | | last_name | varchar(16) | NO | | NULL | | | gender | enum('M','F') | NO | | NULL | | | hire_date | date | NO | | NULL | | +------------+---------------+------+-----+---------+-------+ 6 rows in set (0.01 sec)
这个表默认只有一个主索引,因为ICP只能作用于二级索引,所以我们建立一个二级索引:
ALTER TABLE employees.employees ADD INDEX first_name_last_name (first_name, last_name);
这样就建立了一个first_name和last_name的联合索引。
查询
为了明确看到查询性能,我们启用profiling并关闭query cache:
SET profiling = 1; SET query_cache_type = 0; SET GLOBAL query_cache_size = 0;
然后我们看下面这个查询:
MariaDB [employees]> SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man'; +--------+------------+------------+-----------+--------+------------+ | emp_no | birth_date | first_name | last_name | gender | hire_date | +--------+------------+------------+-----------+--------+------------+ | 254642 | 1959-01-17 | Mary | Botman | M | 1989-11-24 | | 471495 | 1960-09-24 | Mary | Dymetman | M | 1988-06-09 | | 211941 | 1962-08-11 | Mary | Hofman | M | 1993-12-30 | | 217707 | 1962-09-05 | Mary | Lichtman | F | 1987-11-20 | | 486361 | 1957-10-15 | Mary | Oberman | M | 1988-09-06 | | 457469 | 1959-07-15 | Mary | Weedman | M | 1996-11-21 | +--------+------------+------------+-----------+--------+------------+
根据MySQL索引的前缀匹配原则,两者对索引的使用是一致的,即只有first_name采用索引,last_name由于使用了模糊前缀,没法使用索引进行匹配。我将查询联系执行三次,结果如下:
+----------+------------+---------------------------------------------------------------------------+ | Query_ID | Duration | Query | +----------+------------+---------------------------------------------------------------------------+ | 38 | 0.00084400 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' | | 39 | 0.00071800 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' | | 40 | 0.00089600 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' | +----------+------------+---------------------------------------------------------------------------+
然后我们关闭ICP:
SET optimizer_switch='index_condition_pushdown=off';
在运行三次相同的查询,结果如下:
+----------+------------+---------------------------------------------------------------------------+ | Query_ID | Duration | Query | +----------+------------+---------------------------------------------------------------------------+ | 42 | 0.00264400 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' | | 43 | 0.01418900 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' | | 44 | 0.00234200 | SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man' | +----------+------------+---------------------------------------------------------------------------+
有意思的事情发生了,关闭ICP后,同样的查询,耗时是之前的三倍以上。下面我们用explain看看两者有什么区别:
MariaDB [employees]> EXPLAIN SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man'; +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-----------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-----------------------+ | 1 | SIMPLE | employees | ref | first_name_last_name | first_name_last_name | 44 | const | 224 | Using index condition | +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-----------------------+ 1 row in set (0.00 sec)
MariaDB [employees]> EXPLAIN SELECT * FROM employees WHERE first_name='Mary' AND last_name LIKE '%man'; +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-------------+ | 1 | SIMPLE | employees | ref | first_name_last_name | first_name_last_name | 44 | const | 224 | Using where | +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-------------+ 1 row in set (0.00 sec)
前者是开启ICP,后者是关闭ICP。可以看到区别在于Extra,开启ICP时,用的是Using index condition;关闭ICP时,是Using where。
其中Using index condition就是ICP提高查询性能的关键。下一节说明ICP提高查询性能的原理。
原理
ICP的原理简单说来就是将可以利用索引筛选的where条件在存储引擎一侧进行筛选,而不是将所有index access的结果取出放在server端进行where筛选。
以上面的查询为例,在没有ICP时,首先通过索引前缀从存储引擎中读出224条first_name为Mary的记录,然后在server段用where筛选last_name的like条件;而启用ICP后,由于last_name的like筛选可以通过索引字段进行,那么存储引擎内部通过索引与where条件的对比来筛选掉不符合where条件的记录,这个过程不需要读出整条记录,同时只返回给server筛选后的6条记录,因此提高了查询性能。
下面通过图两种查询的原理详细解释。
关闭ICP
在不支持ICP的系统下,索引仅仅作为data access使用。
开启ICP
在ICP优化开启时,在存储引擎端首先用索引过滤可以过滤的where条件,然后再用索引做data access,被index condition过滤掉的数据不必读取,也不会返回server端。
注意事项
有几个关于ICP的事情要注意:
- ICP只能用于二级索引,不能用于主索引。
- 也不是全部where条件都可以用ICP筛选,如果某where条件的字段不在索引中,当然还是要读取整条记录做筛选,在这种情况下,仍然要到server端做where筛选。
- ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例。
参考
[1] https://mariadb.com/kb/en/index-condition-pushdown/
[2] http://dev.mysql.com/doc/refman/5.6/en/index-condition-pushdown-optimization.html
原文地址:MySQL索引与Index Condition Pushdown, 感谢原作者分享。

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。

MySQLクエリのパフォーマンスが低いことの主な理由には、インデックスの使用、クエリオプティマイザーによる誤った実行計画の選択、不合理なテーブルデザイン、過剰なデータボリューム、ロック競争などがあります。 1.インデックスがゆっくりとクエリを引き起こし、インデックスを追加するとパフォーマンスが大幅に向上する可能性があります。 2。説明コマンドを使用してクエリ計画を分析し、オプティマイザーエラーを見つけます。 3.テーブル構造の再構築と結合条件を最適化すると、テーブルの設計上の問題が改善されます。 4.データボリュームが大きい場合、パーティション化とテーブル分割戦略が採用されます。 5.高い並行性環境では、トランザクションの最適化とロック戦略は、ロック競争を減らすことができます。

データベースの最適化では、クエリ要件に従ってインデックス作成戦略を選択する必要があります。1。クエリに複数の列が含まれ、条件の順序が固定されている場合、複合インデックスを使用します。 2。クエリに複数の列が含まれているが、条件の順序が修正されていない場合、複数の単一列インデックスを使用します。複合インデックスは、マルチコラムクエリの最適化に適していますが、単一列インデックスは単一列クエリに適しています。

MySQLスロークエリを最適化するには、slowquerylogとperformance_schemaを使用する必要があります。1。LowerQueryLogを有効にし、しきい値を設定して、スロークエリを記録します。 2。performance_schemaを使用してクエリの実行の詳細を分析し、パフォーマンスのボトルネックを見つけて最適化します。

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
