spark-jobserver提供了一个用于提交和管理Apache Spark作业(job)、jar文件和作业上下文(SparkContext)的RESTful接口。该项目位于git(https://github.com/ooyala/spark-jobserver),当前为0.4版本。 特性 Spark as a Service: 简单的面向job和context管理
spark-jobserver提供了一个用于提交和管理Apache Spark作业(job)、jar文件和作业上下文(SparkContext)的RESTful接口。该项目位于git(https://github.com/ooyala/spark-jobserver),当前为0.4版本。
特性
“Spark as a Service”: 简单的面向job和context管理的REST接口
通过长期运行的job context支持亚秒级低延时作业(job)
可以通过结束context来停止运行的作业(job)
分割jar上传步骤以提高job的启动
异步和同步的job API,其中同步API对低延时作业非常有效
支持Standalone Spark和Mesos
Job和jar信息通过一个可插拔的DAO接口来持久化
命名RDD以缓存,并可以通过该名称获取RDD。这样可以提高作业间RDD的共享和重用
安装并启动jobServer
jobServer依赖sbt,所以必须先装好sbt。
rpm -ivh https://dl.bintray.com/sbt/rpm/sbt-0.13.6.rpm yum install git # 下面clone这个项目 SHELL$ git clone https://github.com/ooyala/spark-jobserver.git # 在项目根目录下,进入sbt SHELL$ sbt ...... [info] Set current project to spark-jobserver-master (in build file:/D:/Projects /spark-jobserver-master/) > #在本地启动jobServer(开发者模式) >re-start --- -Xmx4g ...... #此时会下载spark-core,jetty和liftweb等相关模块。 job-server Starting spark.jobserver.JobServer.main() [success] Total time: 545 s, completed 2014-10-21 19:19:48
然后访问http://localhost:8090 可以看到Web UI
?
测试job执行
这里我们直接使用job-server的test包进行测试
SHELL$ sbt job-server-tests/package ...... [info] Compiling 5 Scala sources to /root/spark-jobserver/job-server-tests/target/classes... [info] Packaging /root/spark-jobserver/job-server-tests/target/job-server-tests-0.4.0.jar ... [info] Done packaging.
编译完成后,将打包的jar文件通过REST接口上传
REST接口的API如下:
GET /jobs
查询所有job
POST /jobs
提交一个新job
GET /jobs/<jobid></jobid>
查询某一任务的结果和状态
GET /jobs/<jobid>/config</jobid>
SHELL$ curl --data-binary @job-server-tests/target/job-server-tests-0.4.0.jar localhost:8090/jars/test OK # 查看提交的jar SHELL$ curl localhost:8090/jars/ { "test": "2014-10-22T15:15:04.826+08:00" } # 提交job 提交的appName为test,class为spark.jobserver.WordCountExample SHELL$ curl -d "input.string = hello job server" 'localhost:8090/jobs?appName=test&classPath=spark.jobserver.WordCountExample' { "status": "STARTED", "result": { "jobId": "34ce0666-0148-46f7-8bcf-a7a19b5608b2", "context": "eba36388-spark.jobserver.WordCountExample" } } # 通过job-id查看结果和配置信息 SHELL$ curl localhost:8090/jobs/34ce0666-0148-46f7-8bcf-a7a19b5608b2 { "status": "OK", "result": { "job": 1, "hello": 1, "server": 1 } SHELL$ curl localhost:8090/jobs/34ce0666-0148-46f7-8bcf-a7a19b5608b2/config { "input" : { "string" : "hello job server" } # 提交一个同步的job,当执行命令后,terminal会hang住直到任务执行完毕。 SHELL$ curl -d "input.string = hello job server" 'localhost:8090/jobs?appName=test&classPath=spark.jobserver.WordCountExample'&sync=true { "status": "OK", "result": { "job": 1, "hello": 1, "server": 1 }
在Web UI上也可以看到Completed Jobs相应的信息。
预先启动Context
和Context相关的API
GET /contexts
?查询所有预先建立好的context
POST /contexts
?建立新的context
DELETE ?/contexts/<name></name>
?删除此context,停止运行于此context上的所有job
SHELL$ curl -d "" 'localhost:8090/contexts/test-context?num-cpu-cores=4&mem-per-node=512m' OK # 查看现有的context curl localhost:8090/contexts ["test-context", "feceedc3-spark.jobserver.WordCountExample"] 接下来在这个context上执行job curl -d "input.string = a b c a b see" 'localhost:8090/jobs?appName=test&classPath=spark.jobserver.WordCountExample&context=test-context&sync=true' { "status": "OK", "result": { "a": 2, "b": 2, "c": 1, "see": 1 }
配置文件
打开配置文件,可以发现master设置为local[4],可以将其改为我们的集群地址。
vim spark-jobserver/config/local.conf.template master = "local[4]"
此外,关于数据对象的存储方法和路径:
jobdao = spark.jobserver.io.JobFileDAO filedao { rootdir = /tmp/spark-job-server/filedao/data }
默认context设置,该设置可以被
下面再次在sbt中启动REST接口的中的参数覆盖。
# universal context configuration. These settings can be overridden, see README.md context-settings { num-cpu-cores = 2 # Number of cores to allocate. Required. memory-per-node = 512m # Executor memory per node, -Xmx style eg 512m, #1G, etc. # in case spark distribution should be accessed from HDFS (as opposed to being installed on every mesos slave) # spark.executor.uri = "hdfs://namenode:8020/apps/spark/spark.tgz" # uris of jars to be loaded into the classpath for this context # dependent-jar-uris = ["file:///some/path/present/in/each/mesos/slave/somepackage.jar"] }
基本的使用到此为止,jobServer的部署和项目使用将之后介绍。顺便期待下一个版本SQL Window的功能。
^^
原文地址:Spark as a Service之JobServer初测, 感谢原作者分享。

データベースとプログラミングにおけるMySQLの位置は非常に重要です。これは、さまざまなアプリケーションシナリオで広く使用されているオープンソースのリレーショナルデータベース管理システムです。 1)MySQLは、効率的なデータストレージ、組織、および検索機能を提供し、Web、モバイル、およびエンタープライズレベルのシステムをサポートします。 2)クライアントサーバーアーキテクチャを使用し、複数のストレージエンジンとインデックスの最適化をサポートします。 3)基本的な使用には、テーブルの作成とデータの挿入が含まれ、高度な使用法にはマルチテーブル結合と複雑なクエリが含まれます。 4)SQL構文エラーやパフォーマンスの問題などのよくある質問は、説明コマンドとスロークエリログを介してデバッグできます。 5)パフォーマンス最適化方法には、インデックスの合理的な使用、最適化されたクエリ、およびキャッシュの使用が含まれます。ベストプラクティスには、トランザクションと準備された星の使用が含まれます

MySQLは、中小企業に適しています。 1)中小企業は、顧客情報の保存など、基本的なデータ管理にMySQLを使用できます。 2)大企業はMySQLを使用して、大規模なデータと複雑なビジネスロジックを処理して、クエリのパフォーマンスとトランザクション処理を最適化できます。

INNODBは、次のキーロックメカニズムを通じてファントムの読み取りを効果的に防止します。 1)Next-KeyLockingは、Row LockとGap Lockを組み合わせてレコードとギャップをロックして、新しいレコードが挿入されないようにします。 2)実際のアプリケーションでは、クエリを最適化して分離レベルを調整することにより、ロック競争を削減し、並行性パフォーマンスを改善できます。

MySQLはプログラミング言語ではありませんが、そのクエリ言語SQLにはプログラミング言語の特性があります。1。SQLは条件付き判断、ループ、可変操作をサポートします。 2。ストアドプロシージャ、トリガー、機能を通じて、ユーザーはデータベースで複雑な論理操作を実行できます。

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

WebStorm Mac版
便利なJavaScript開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Dreamweaver Mac版
ビジュアル Web 開発ツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
