前段时间老师给我的任务是让我使用MapReduces和Spark分别实现K-means算法来比较MapReduces和Spark。首先问题是K-means算法是什么? K-means算法的中心思想其实就是迭代,通过不断的迭代,使聚类效果达到局部最优,为什么我们说局部最优呢?因为K-means算法的
前段时间老师给我的任务是让我使用MapReduces和Spark分别实现K-means算法来比较MapReduces和Spark。首先问题是K-means算法是什么?
K-means算法的中心思想其实就是迭代,通过不断的迭代,使聚类效果达到局部最优,为什么我们说局部最优呢?因为K-means算法的效果的优劣性和最初选取的中心点是有莫大关系的,我们只能在初始中心点的基础上达到局部最优解。K-means算法是基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。我感觉总的来说就是物以类聚。
对于聚类问题,我们事先并不知道给定的一个训练数集到底有哪些类别(即没有指定类标签),而是根据需要设置指定个数类标签的数量(但不知道具体的类标签是什么),然后通过K-means算法将具有相同特征,或者基于一定规则认为某一些对象相似,与其它一些组明显的不同的数据聚集到一起,自然形成分组。之后,我们可以根据每一组的数据的特点,给定一个合适的类标签(当然,可能给出类标签对实际应用没有实际意思,例如可能我们就想看一下聚类得到的各个数据集的相似性)。
在这里我们首先说明一个概念:质心(Centroid)。质心可以认为就是一个样本点,或者可以认为是数据集中的一个数据点P,它是具有相似性的一组数据的中心,即该组中每个数据点到P的距离都比到其它质心的距离近(与其它质心相似性比较低)。
K个初始类聚类质心的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的质心,初始地代表一个聚类结果,当然这个结果一般情况不是合理的,只是随便地将数据集进行了一次随机的划分,具体进行修正这个质心还需要进行多轮的计算,来进一步步逼近我们期望的聚类结果:具有相似性的对象聚集到一个组中,它们都具有共同的一个质心。另外,因为初始质心选择的随机性,可能未必使最终的结果达到我们的期望,所以我们可以多次迭代,每次迭代都重新随机得到初始质心,直到最终的聚类结果能够满足我们的期望为止。
1. 首先输入k的值,即我们希望将数据集D = {P1, P2, …, Pn}经过聚类得到k个分类(分组)。
2. 从数据集D中随机选择k个数据点作为质心,质心集合定义为:Centroid = {Cp1, Cp2, …, Cpk},排除质心以后数据集O={O1, O2, …, Om}。
- 对集合O中每一个数据点Oi,计算Oi与Cpj(j=1, 2, …,k)的距离,得到一组距离Si={si1, si2, …, sik},计算Si中距离最小值,则该该数据点Oi就属于该最小距离值对应的质心。
- 每个数据点Oi都已经属于其中一个质心,然后根据每个质心所包含的数据点的集合,重新计算得到一个新的质心。
5. 如果新计算的质心和原来的质心之间的距离达到某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),可以认为我们进行的聚类已经达到期望的结果,算法终止。
6. 如果新质心和原来之心距离变化很大,需要迭代2~5步骤。
这是之前整理的一份,刚刚翻出来,现在贴出来,以便之后查看。
原文地址:形象理解K-Means算法, 感谢原作者分享。

MySQLデータベースをアップグレードする手順には次のものがあります。1。データベースをバックアップします。2。現在のMySQLサービスを停止します。3。MySQLの新しいバージョンをインストールします。アップグレードプロセス中に互換性の問題が必要であり、Perconatoolkitなどの高度なツールをテストと最適化に使用できます。

MySQLバックアップポリシーには、論理バックアップ、物理バックアップ、増分バックアップ、レプリケーションベースのバックアップ、クラウドバックアップが含まれます。 1. Logical BackupはMySqldumpを使用してデータベースの構造とデータをエクスポートします。これは、小さなデータベースとバージョンの移行に適しています。 2.物理バックアップは、データファイルをコピーすることで高速かつ包括的ですが、データベースの一貫性が必要です。 3.インクリメンタルバックアップは、バイナリロギングを使用して変更を記録します。これは、大規模なデータベースに適しています。 4.レプリケーションベースのバックアップは、サーバーからバックアップすることにより、生産システムへの影響を減らします。 5. Amazonrdsなどのクラウドバックアップは自動化ソリューションを提供しますが、コストと制御を考慮する必要があります。ポリシーを選択するときは、データベースサイズ、ダウンタイム許容度、回復時間、および回復ポイントの目標を考慮する必要があります。

mysqlclusteringenhancesdatabaserobustnessnessnessnessnessnistandistributiondistributingdataacrossmultiplenodes.itesthendbenginefordatareplication andfaulttolerance、保証highavailability.setupinvolvesconfiguringmanagement、data、ssqlnodes、carefulmonitoringringandpe

MySQLのデータベーススキーマ設計の最適化は、次の手順を通じてパフォーマンスを改善できます。1。インデックス最適化:一般的なクエリ列にインデックスを作成し、クエリのオーバーヘッドのバランスをとり、更新を挿入します。 2。テーブル構造の最適化:正規化または反通常化によりデータ冗長性を削減し、アクセス効率を改善します。 3。データ型の選択:Varcharの代わりにINTなどの適切なデータ型を使用して、ストレージスペースを削減します。 4。パーティション化とサブテーブル:大量のデータボリュームの場合、パーティション化とサブテーブルを使用してデータを分散させてクエリとメンテナンスの効率を改善します。

tooptimizemysqlperformance、soflowthesesteps:1)properindexingtospeedupqueries、2)useexplaintoanalyzeandoptimize Queryperformance、3)AductServerContingSettingStingsinginginnodb_buffer_pool_sizeandmax_connections、4)

MySQL関数は、データ処理と計算に使用できます。 1.基本的な使用には、文字列処理、日付計算、数学操作が含まれます。 2。高度な使用法には、複数の関数を組み合わせて複雑な操作を実装することが含まれます。 3.パフォーマンスの最適化では、Where句での機能の使用を回避し、GroupByおよび一時テーブルを使用する必要があります。

MySQLでデータを挿入するための効率的な方法には、次のものが含まれます。1。insertInto ...値構文、2。LoadDatainFileコマンドの使用、3。トランザクション処理の使用、4。バッチサイズの調整、5。Insurtignoreまたは挿入の使用...

MySQLでは、AlterTabletable_nameaddcolumnnew_columnvarchar(255)afterexisting_columnを使用してフィールドを追加し、andtabletable_namedopcolumncolumn_to_dropを使用してフィールドを削除します。フィールドを追加するときは、クエリのパフォーマンスとデータ構造を最適化する場所を指定する必要があります。フィールドを削除する前に、操作が不可逆的であることを確認する必要があります。オンラインDDL、バックアップデータ、テスト環境、および低負荷期間を使用したテーブル構造の変更は、パフォーマンスの最適化とベストプラクティスです。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

メモ帳++7.3.1
使いやすく無料のコードエディター

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ホットトピック









