本篇是关于Drupal7下Field Storage的测试结果,以及不同情况下对 drupal 性能的影响,主要是MySQL和MongoDB以及在调优参数情况和不调优情况下的对比。 本篇翻译自 《Field Storage Tests with Drupal 7》 链接地址: http://posulliv.github.io/2013/01/07/b
本篇是关于Drupal7下Field Storage的测试结果,以及不同情况下对drupal性能的影响,主要是MySQL和MongoDB以及在调优参数情况和不调优情况下的对比。
本篇翻译自 《Field Storage Tests with Drupal 7》
链接地址: http://posulliv.github.io/2013/01/07/bench-field-storage/
测试环境
EC2 EBS backed Large instance (8GB of memory) in the US-EAST availability zone
Ubuntu 12.04 (ami-fd20ad94 as listed in official ubuntu AMI’s)
MySQL 5.5.28
PostgreSQL 9.2
MongoDB 2.0.4
Drupal 7.17
Drush 5.1
Migrate 2.5
测试的case是分别对MySQL和PostgreSQL进行调优和没有调优,以及配合MongoDB下进行的,具体的优化参数这里先列举一下。
MySQL的优化参数如下:
innodb_flush_log_at_trx_commit=0 innodb_doublewrite=0 log-bin=0 innodb_support_xa=0 innodb_buffer_pool_size=6G innodb_log_file_size=512M
PostgreSQL的优化参数如下:
fsync = off synchronous_commit = off wal_writer_delay = 10000ms wal_buffers = 16MB checkpoint_segments = 64 shared_buffers = 6GB
测试数据集(Dataset)
测试数据集来自于migrate_example_baseball,现在已经是migrate模块(Drupal官网地址: http://www.drupal.org/project/migrate)的一部分了,这些数据包括了美国职业棒球大联盟2000到2009年的数据,每年的数据在一个CSV文件里面。
测试结果
测试环境 | 平均吞吐率 |
---|---|
Default MySQL | 1932 nodes / minute |
Default PostgreSQL | 1649 nodes / minute |
Tuned MySQL | 3024 nodes / minute |
Tuned PostgreSQL | 1772 nodes / minute |
Default MySQL with MongoDB | 4609 nodes / minute |
Default PostgreSQL with MongoDB | 4810 nodes / minute |
Tuned MySQL with MongoDB | 7671 nodes / minute |
Tuned PostgreSQL with MongoDB | 5911 nodes / minute |
结论
一目了然,结果自然不必说,MongoDB的性能肯定比默认数据库的Field Storage要好很多,优化过的数据库肯定比没有优化过的数据库性能要好很多。
不过比较有意思的是,PostgreSQL的测试数据,我们发现,在Drupal7的Field Storage机制里,每个字段都会新建表的机制,对PostgreSQL的影响还是非常大的。因此,用不用MongoDB,对PostgreSQL数据库的影响更大一些。
接下一篇关于Field Storage的测试,请点击查看:
《Drupal7 Field Storage性能之Field SQL Norevisions》
其他问题,请到Drupal大学提问 >
原文地址:Drupal7的Field Storage性能测试报告(译), 感谢原作者分享。

MySQLデータベースをアップグレードする手順には次のものがあります。1。データベースをバックアップします。2。現在のMySQLサービスを停止します。3。MySQLの新しいバージョンをインストールします。アップグレードプロセス中に互換性の問題が必要であり、Perconatoolkitなどの高度なツールをテストと最適化に使用できます。

MySQLバックアップポリシーには、論理バックアップ、物理バックアップ、増分バックアップ、レプリケーションベースのバックアップ、クラウドバックアップが含まれます。 1. Logical BackupはMySqldumpを使用してデータベースの構造とデータをエクスポートします。これは、小さなデータベースとバージョンの移行に適しています。 2.物理バックアップは、データファイルをコピーすることで高速かつ包括的ですが、データベースの一貫性が必要です。 3.インクリメンタルバックアップは、バイナリロギングを使用して変更を記録します。これは、大規模なデータベースに適しています。 4.レプリケーションベースのバックアップは、サーバーからバックアップすることにより、生産システムへの影響を減らします。 5. Amazonrdsなどのクラウドバックアップは自動化ソリューションを提供しますが、コストと制御を考慮する必要があります。ポリシーを選択するときは、データベースサイズ、ダウンタイム許容度、回復時間、および回復ポイントの目標を考慮する必要があります。

mysqlclusteringenhancesdatabaserobustnessnessnessnessnessnistandistributiondistributingdataacrossmultiplenodes.itesthendbenginefordatareplication andfaulttolerance、保証highavailability.setupinvolvesconfiguringmanagement、data、ssqlnodes、carefulmonitoringringandpe

MySQLのデータベーススキーマ設計の最適化は、次の手順を通じてパフォーマンスを改善できます。1。インデックス最適化:一般的なクエリ列にインデックスを作成し、クエリのオーバーヘッドのバランスをとり、更新を挿入します。 2。テーブル構造の最適化:正規化または反通常化によりデータ冗長性を削減し、アクセス効率を改善します。 3。データ型の選択:Varcharの代わりにINTなどの適切なデータ型を使用して、ストレージスペースを削減します。 4。パーティション化とサブテーブル:大量のデータボリュームの場合、パーティション化とサブテーブルを使用してデータを分散させてクエリとメンテナンスの効率を改善します。

tooptimizemysqlperformance、soflowthesesteps:1)properindexingtospeedupqueries、2)useexplaintoanalyzeandoptimize Queryperformance、3)AductServerContingSettingStingsinginginnodb_buffer_pool_sizeandmax_connections、4)

MySQL関数は、データ処理と計算に使用できます。 1.基本的な使用には、文字列処理、日付計算、数学操作が含まれます。 2。高度な使用法には、複数の関数を組み合わせて複雑な操作を実装することが含まれます。 3.パフォーマンスの最適化では、Where句での機能の使用を回避し、GroupByおよび一時テーブルを使用する必要があります。

MySQLでデータを挿入するための効率的な方法には、次のものが含まれます。1。insertInto ...値構文、2。LoadDatainFileコマンドの使用、3。トランザクション処理の使用、4。バッチサイズの調整、5。Insurtignoreまたは挿入の使用...

MySQLでは、AlterTabletable_nameaddcolumnnew_columnvarchar(255)afterexisting_columnを使用してフィールドを追加し、andtabletable_namedopcolumncolumn_to_dropを使用してフィールドを削除します。フィールドを追加するときは、クエリのパフォーマンスとデータ構造を最適化する場所を指定する必要があります。フィールドを削除する前に、操作が不可逆的であることを確認する必要があります。オンラインDDL、バックアップデータ、テスト環境、および低負荷期間を使用したテーブル構造の変更は、パフォーマンスの最適化とベストプラクティスです。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ホットトピック









