検索
ホームページデータベースmysql チュートリアルDrupal7的Field Storage性能测试报告(译)

Drupal7的Field Storage性能测试报告(译)

Jun 07, 2016 pm 04:37 PM
storageパフォーマンス報告テスト

本篇是关于Drupal7下Field Storage的测试结果,以及不同情况下对 drupal 性能的影响,主要是MySQL和MongoDB以及在调优参数情况和不调优情况下的对比。 本篇翻译自 《Field Storage Tests with Drupal 7》 链接地址: http://posulliv.github.io/2013/01/07/b

本篇是关于Drupal7下Field Storage的测试结果,以及不同情况下对drupal性能的影响,主要是MySQL和MongoDB以及在调优参数情况和不调优情况下的对比。
本篇翻译自 《Field Storage Tests with Drupal 7》
链接地址: http://posulliv.github.io/2013/01/07/bench-field-storage/

测试环境

EC2 EBS backed Large instance (8GB of memory) in the US-EAST availability zone
Ubuntu 12.04 (ami-fd20ad94 as listed in official ubuntu AMI’s)
MySQL 5.5.28
PostgreSQL 9.2
MongoDB 2.0.4
Drupal 7.17
Drush 5.1
Migrate 2.5

测试的case是分别对MySQL和PostgreSQL进行调优和没有调优,以及配合MongoDB下进行的,具体的优化参数这里先列举一下。

MySQL的优化参数如下:

innodb_flush_log_at_trx_commit=0
innodb_doublewrite=0
log-bin=0
innodb_support_xa=0
innodb_buffer_pool_size=6G
innodb_log_file_size=512M

PostgreSQL的优化参数如下:

fsync = off
synchronous_commit = off
wal_writer_delay = 10000ms
wal_buffers = 16MB
checkpoint_segments = 64
shared_buffers = 6GB

测试数据集(Dataset)

测试数据集来自于migrate_example_baseball,现在已经是migrate模块(Drupal官网地址: http://www.drupal.org/project/migrate)的一部分了,这些数据包括了美国职业棒球大联盟2000到2009年的数据,每年的数据在一个CSV文件里面。

测试结果

测试环境 平均吞吐率
Default MySQL 1932 nodes / minute
Default PostgreSQL 1649 nodes / minute
Tuned MySQL 3024 nodes / minute
Tuned PostgreSQL 1772 nodes / minute
Default MySQL with MongoDB 4609 nodes / minute
Default PostgreSQL with MongoDB 4810 nodes / minute
Tuned MySQL with MongoDB 7671 nodes / minute
Tuned PostgreSQL with MongoDB 5911 nodes / minute

Drupal 7 Field Storage Test

结论

一目了然,结果自然不必说,MongoDB的性能肯定比默认数据库的Field Storage要好很多,优化过的数据库肯定比没有优化过的数据库性能要好很多。
不过比较有意思的是,PostgreSQL的测试数据,我们发现,在Drupal7的Field Storage机制里,每个字段都会新建表的机制,对PostgreSQL的影响还是非常大的。因此,用不用MongoDB,对PostgreSQL数据库的影响更大一些。

接下一篇关于Field Storage的测试,请点击查看:
《Drupal7 Field Storage性能之Field SQL Norevisions》

其他问题,请到Drupal大学提问 >

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
MySQLのデータベースアップグレードをどのように処理しますか?MySQLのデータベースアップグレードをどのように処理しますか?Apr 30, 2025 am 12:28 AM

MySQLデータベースをアップグレードする手順には次のものがあります。1。データベースをバックアップします。2。現在のMySQLサービスを停止します。3。MySQLの新しいバージョンをインストールします。アップグレードプロセス中に互換性の問題が必要であり、Perconatoolkitなどの高度なツールをテストと最適化に使用できます。

MySQLに使用できるさまざまなバックアップ戦略は何ですか?MySQLに使用できるさまざまなバックアップ戦略は何ですか?Apr 30, 2025 am 12:28 AM

MySQLバックアップポリシーには、論理バックアップ、物理バックアップ、増分バックアップ、レプリケーションベースのバックアップ、クラウドバックアップが含まれます。 1. Logical BackupはMySqldumpを使用してデータベースの構造とデータをエクスポートします。これは、小さなデータベースとバージョンの移行に適しています。 2.物理バックアップは、データファイルをコピーすることで高速かつ包括的ですが、データベースの一貫性が必要です。 3.インクリメンタルバックアップは、バイナリロギングを使用して変更を記録します。これは、大規模なデータベースに適しています。 4.レプリケーションベースのバックアップは、サーバーからバックアップすることにより、生産システムへの影響を減らします。 5. Amazonrdsなどのクラウドバックアップは自動化ソリューションを提供しますが、コストと制御を考慮する必要があります。ポリシーを選択するときは、データベースサイズ、ダウンタイム許容度、回復時間、および回復ポイントの目標を考慮する必要があります。

MySQLクラスタリングとは何ですか?MySQLクラスタリングとは何ですか?Apr 30, 2025 am 12:28 AM

mysqlclusteringenhancesdatabaserobustnessnessnessnessnessnistandistributiondistributingdataacrossmultiplenodes.itesthendbenginefordatareplication andfaulttolerance、保証highavailability.setupinvolvesconfiguringmanagement、data、ssqlnodes、carefulmonitoringringandpe

MySQLのパフォーマンスのためにデータベーススキーマ設計を最適化するにはどうすればよいですか?MySQLのパフォーマンスのためにデータベーススキーマ設計を最適化するにはどうすればよいですか?Apr 30, 2025 am 12:27 AM

MySQLのデータベーススキーマ設計の最適化は、次の手順を通じてパフォーマンスを改善できます。1。インデックス最適化:一般的なクエリ列にインデックスを作成し、クエリのオーバーヘッドのバランスをとり、更新を挿入します。 2。テーブル構造の最適化:正規化または反通常化によりデータ冗長性を削減し、アクセス効率を改善します。 3。データ型の選択:Varcharの代わりにINTなどの適切なデータ型を使用して、ストレージスペースを削減します。 4。パーティション化とサブテーブル:大量のデータボリュームの場合、パーティション化とサブテーブルを使用してデータを分散させてクエリとメンテナンスの効率を改善します。

MySQLのパフォーマンスをどのように最適化できますか?MySQLのパフォーマンスをどのように最適化できますか?Apr 30, 2025 am 12:26 AM

tooptimizemysqlperformance、soflowthesesteps:1)properindexingtospeedupqueries、2)useexplaintoanalyzeandoptimize Queryperformance、3)AductServerContingSettingStingsinginginnodb_buffer_pool_sizeandmax_connections、4)

データ処理と計算にMySQL関数を使用する方法データ処理と計算にMySQL関数を使用する方法Apr 29, 2025 pm 04:21 PM

MySQL関数は、データ処理と計算に使用できます。 1.基本的な使用には、文字列処理、日付計算、数学操作が含まれます。 2。高度な使用法には、複数の関数を組み合わせて複雑な操作を実装することが含まれます。 3.パフォーマンスの最適化では、Where句での機能の使用を回避し、GroupByおよび一時テーブルを使用する必要があります。

MySQLにデータを挿入する効率的な方法MySQLにデータを挿入する効率的な方法Apr 29, 2025 pm 04:18 PM

MySQLでデータを挿入するための効率的な方法には、次のものが含まれます。1。insertInto ...値構文、2。LoadDatainFileコマンドの使用、3。トランザクション処理の使用、4。バッチサイズの調整、5。Insurtignoreまたは挿入の使用...

フィールドをMySQLテーブルに追加および削除する手順フィールドをMySQLテーブルに追加および削除する手順Apr 29, 2025 pm 04:15 PM

MySQLでは、AlterTabletable_nameaddcolumnnew_columnvarchar(255)afterexisting_columnを使用してフィールドを追加し、andtabletable_namedopcolumncolumn_to_dropを使用してフィールドを削除します。フィールドを追加するときは、クエリのパフォーマンスとデータ構造を最適化する場所を指定する必要があります。フィールドを削除する前に、操作が不可逆的であることを確認する必要があります。オンラインDDL、バックアップデータ、テスト環境、および低負荷期間を使用したテーブル構造の変更は、パフォーマンスの最適化とベストプラクティスです。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!