検索

Hadoop伪分布式运行

Jun 07, 2016 pm 04:34 PM
hadoop配布されたノード走る

Hadoop可以在单节点上以所谓的伪分布式模式运行,此时每一个Hadoop守护进程都作为一个独立的Java进程运行。本文通过自动化脚本配置Hadoop伪分布式模式。测试环境为VMware中的Centos 6.3, Hadoop 1.2.1.其他版本未测试。 伪分布式配置脚本 包括配置core-site.

Hadoop可以在单节点上以所谓的伪分布式模式运行,此时每一个Hadoop守护进程都作为一个独立的Java进程运行。本文通过自动化脚本配置Hadoop伪分布式模式。测试环境为VMware中的Centos 6.3, Hadoop 1.2.1.其他版本未测试。

伪分布式配置脚本

包括配置core-site.xml,hdfs-site.xml及mapred-site.xml,配置ssh免密码登陆。[1]

#!/bin/bash
# Usage: Hadoop伪分布式配置
# History:
#	20140426  annhe  完成基本功能
# Check if user is root
if [ $(id -u) != "0" ]; then
    printf "Error: You must be root to run this script!\n"
    exit 1
fi
#同步时钟
rm -rf /etc/localtime
ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
#yum install -y ntp
ntpdate -u pool.ntp.org &>/dev/null
echo -e "Time: `date` \n"
#默认为单网卡结构,多网卡的暂不考虑
IP=`ifconfig eth0 |grep "inet\ addr" |awk '{print $2}' |cut -d ":" -f2`
#伪分布式
function PseudoDistributed ()
{
	cd /etc/hadoop/
	#恢复备份
	mv core-site.xml.bak core-site.xml
	mv hdfs-site.xml.bak hdfs-site.xml
	mv mapred-site.xml.bak mapred-site.xml
	#备份
	mv core-site.xml core-site.xml.bak
	mv hdfs-site.xml hdfs-site.xml.bak
	mv mapred-site.xml mapred-site.xml.bak
	#使用下面的core-site.xml
	cat > core-site.xml 
<?xml-stylesheet type="text/xsl" href="http://www.annhe.net/configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
	<property>
		<name>fs.default.name</name>
		<value>hdfs://$IP:9000</value>
	</property>
</configuration>
eof
	#使用下面的hdfs-site.xml
	cat > hdfs-site.xml 
<?xml-stylesheet type="text/xsl" href="http://www.annhe.net/configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
	<property>
		<name>dfs.replication</name>
		<value>1</value>
	</property>
</configuration>	
eof
	#使用下面的mapred-site.xml
	cat > mapred-site.xml 
<?xml-stylesheet type="text/xsl" href="http://www.annhe.net/configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
	<property>
		<name>mapred.job.tracker</name>
		<value>$IP:9001</value>
	</property>
</configuration>
eof
}
#配置ssh免密码登陆
function PassphraselessSSH ()
{
	#不重复生成私钥
	[ ! -f ~/.ssh/id_dsa ] && ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
	cat ~/.ssh/authorized_keys |grep "`cat ~/.ssh/id_dsa.pub`" &>/dev/null && r=0 || r=1
	#没有公钥的时候才添加
	[ $r -eq 1 ] && cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
	chmod 644 ~/.ssh/authorized_keys
}
#执行
function Execute ()
{
	#格式化一个新的分布式文件系统
	hadoop namenode -format
	#启动Hadoop守护进程
	start-all.sh
	echo -e "\n========================================================================"
	echo "hadoop log dir : $HADOOP_LOG_DIR"
	echo "NameNode - http://$IP:50070/"
	echo "JobTracker - http://$IP:50030/"
	echo -e "\n========================================================================="
}
PseudoDistributed 2>&1 | tee -a pseudo.log
PassphraselessSSH 2>&1 | tee -a pseudo.log
Execute 2>&1 | tee -a pseudo.log

脚本测试结果

[root@hadoop hadoop]# ./pseudo.sh
14/04/26 23:52:30 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG:   host = hadoop/216.34.94.184
STARTUP_MSG:   args = [-format]
STARTUP_MSG:   version = 1.2.1
STARTUP_MSG:   build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2 -r 1503152; compiled by 'mattf' on Mon Jul 22 15:27:42 PDT 2013
STARTUP_MSG:   java = 1.7.0_51
************************************************************/
Re-format filesystem in /tmp/hadoop-root/dfs/name ? (Y or N) y
Format aborted in /tmp/hadoop-root/dfs/name
14/04/26 23:52:40 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop/216.34.94.184
************************************************************/
starting namenode, logging to /var/log/hadoop/root/hadoop-root-namenode-hadoop.out
localhost: starting datanode, logging to /var/log/hadoop/root/hadoop-root-datanode-hadoop.out
localhost: starting secondarynamenode, logging to /var/log/hadoop/root/hadoop-root-secondarynamenode-hadoop.out
starting jobtracker, logging to /var/log/hadoop/root/hadoop-root-jobtracker-hadoop.out
localhost: starting tasktracker, logging to /var/log/hadoop/root/hadoop-root-tasktracker-hadoop.out
========================================================================
hadoop log dir : /var/log/hadoop/root
NameNode - http://192.168.60.128:50070/
JobTracker - http://192.168.60.128:50030/
=========================================================================

通过宿主机上的浏览器访问NameNode和JobTracker的网络接口

namenode

浏览器访问namenode的网络接口

jobtracker

浏览器访问jobtracker网络接口

运行测试程序

将输入文件拷贝到分布式文件系统:

$ hadoop fs -put input input

通过网络接口查看hdfs

browserdirectory

通过NameNode网络接口查看hdfs文件系统

运行示例程序

[root@hadoop hadoop]# hadoop jar /usr/share/hadoop/hadoop-examples-1.2.1.jar wordcount input output

通过JobTracker网络接口查看执行状态

runwordcount

Wordcount执行状态

执行结果

[root@hadoop hadoop]# hadoop jar /usr/share/hadoop/hadoop-examples-1.2.1.jar wordcount input out2
14/04/27 03:34:56 INFO input.FileInputFormat: Total input paths to process : 2
14/04/27 03:34:56 INFO util.NativeCodeLoader: Loaded the native-hadoop library
14/04/27 03:34:56 WARN snappy.LoadSnappy: Snappy native library not loaded
14/04/27 03:34:57 INFO mapred.JobClient: Running job: job_201404270333_0001
14/04/27 03:34:58 INFO mapred.JobClient:  map 0% reduce 0%
14/04/27 03:35:49 INFO mapred.JobClient:  map 100% reduce 0%
14/04/27 03:36:16 INFO mapred.JobClient:  map 100% reduce 100%
14/04/27 03:36:19 INFO mapred.JobClient: Job complete: job_201404270333_0001
14/04/27 03:36:19 INFO mapred.JobClient: Counters: 29
14/04/27 03:36:19 INFO mapred.JobClient:   Job Counters
14/04/27 03:36:19 INFO mapred.JobClient:     Launched reduce tasks=1
14/04/27 03:36:19 INFO mapred.JobClient:     SLOTS_MILLIS_MAPS=72895
14/04/27 03:36:19 INFO mapred.JobClient:     Total time spent by all reduces waiting after reserving slots (ms)=0
14/04/27 03:36:19 INFO mapred.JobClient:     Total time spent by all maps waiting after reserving slots (ms)=0
14/04/27 03:36:19 INFO mapred.JobClient:     Launched map tasks=2
14/04/27 03:36:19 INFO mapred.JobClient:     Data-local map tasks=2
14/04/27 03:36:19 INFO mapred.JobClient:     SLOTS_MILLIS_REDUCES=24880
14/04/27 03:36:19 INFO mapred.JobClient:   File Output Format Counters
14/04/27 03:36:19 INFO mapred.JobClient:     Bytes Written=25
14/04/27 03:36:19 INFO mapred.JobClient:   FileSystemCounters
14/04/27 03:36:19 INFO mapred.JobClient:     FILE_BYTES_READ=55
14/04/27 03:36:19 INFO mapred.JobClient:     HDFS_BYTES_READ=260
14/04/27 03:36:19 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=164041
14/04/27 03:36:19 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=25
14/04/27 03:36:19 INFO mapred.JobClient:   File Input Format Counters
14/04/27 03:36:19 INFO mapred.JobClient:     Bytes Read=25
14/04/27 03:36:19 INFO mapred.JobClient:   Map-Reduce Framework
14/04/27 03:36:19 INFO mapred.JobClient:     Map output materialized bytes=61
14/04/27 03:36:19 INFO mapred.JobClient:     Map input records=2
14/04/27 03:36:19 INFO mapred.JobClient:     Reduce shuffle bytes=61
14/04/27 03:36:19 INFO mapred.JobClient:     Spilled Records=8
14/04/27 03:36:19 INFO mapred.JobClient:     Map output bytes=41
14/04/27 03:36:19 INFO mapred.JobClient:     Total committed heap usage (bytes)=414441472
14/04/27 03:36:19 INFO mapred.JobClient:     CPU time spent (ms)=2910
14/04/27 03:36:19 INFO mapred.JobClient:     Combine input records=4
14/04/27 03:36:19 INFO mapred.JobClient:     SPLIT_RAW_BYTES=235
14/04/27 03:36:19 INFO mapred.JobClient:     Reduce input records=4
14/04/27 03:36:19 INFO mapred.JobClient:     Reduce input groups=3
14/04/27 03:36:19 INFO mapred.JobClient:     Combine output records=4
14/04/27 03:36:19 INFO mapred.JobClient:     Physical memory (bytes) snapshot=353439744
14/04/27 03:36:19 INFO mapred.JobClient:     Reduce output records=3
14/04/27 03:36:19 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=2195972096
14/04/27 03:36:19 INFO mapred.JobClient:     Map output records=4

查看结果

[root@hadoop hadoop]# hadoop fs -cat out2/*
hadoop  1
hello   2
world   1

也可以将分布式文件系统上的文件拷贝到本地查看

[root@hadoop hadoop]# hadoop fs -get out2 out4
[root@hadoop hadoop]# cat out4/*
cat: out4/_logs: Is a directory
hadoop  1
hello   2
world   1

完成全部操作后,停止守护进程:

[root@hadoop hadoop]# stop-all.sh
stopping jobtracker
localhost: stopping tasktracker
stopping namenode
localhost: stopping datanode
localhost: stopping secondarynamenode

遇到的问题

宿主机不能访问网络接口

因为开启了iptables,所以需要添加相应端口,当然测试环境也可以直接将iptables关闭。

# Firewall configuration written by system-config-firewall
# Manual customization of this file is not recommended.
*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 50070 -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 50030 -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 50075 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT

Browse the filesystem跳转地址不对

NameNode网络接口点击Browse the filesystem,跳转到localhost:50075。[2][3]

修改core-site.xml,将hdfs://localhost:9000改成虚拟机ip地址。(上面的脚本已经改写为自动配置为IP)。

根据几次改动的情况,这里也是可以填写域名的,只是要在访问的机器上能解析这个域名。因此公网环境中有DNS服务器的应该是可以设置域名的。

执行reduce的时候卡死

在/etc/hosts中添加主机名对应的ip地址 [4][5]。(已更新Hadoop安装脚本,会自动配置此项)

127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
127.0.0.1   hadoop  #添加这一行

参考文献

[1]. Hadoop官方文档.?http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html

[2]. Stackoverflow.?http://stackoverflow.com/questions/15254492/wrong-redirect-from-hadoop-hdfs-namenode-to-localhost50075

[3]. Iteye.?http://yymmiinngg.iteye.com/blog/706909

[4].Stackoverflow.?http://stackoverflow.com/questions/10165549/hadoop-wordcount-example-stuck-at-map-100-reduce-0

[5]. 李俊的博客.?http://www.colorlight.cn/archives/32

 


本文遵从CC版权协定,转载请以链接形式注明出处。
本文链接地址: http://www.annhe.net/article-2682.html
声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
新しいMySQLユーザーに権限を付与する方法新しいMySQLユーザーに権限を付与する方法May 09, 2025 am 12:16 AM

tograntpermissionstonewmysqlusers、フォローステープ:1)Accessmysqlasauserwithsufthiveerprivileges、2)createanewuser withthecreateusercommand、3)usethegrantcommandtospecifypermissionsionsionsionsionsionsionsionsionsionsionselect、挿入、挿入、挿入、更新、4)

MySQLにユーザーを追加する方法:ステップバイステップガイドMySQLにユーザーを追加する方法:ステップバイステップガイドMay 09, 2025 am 12:14 AM

toadduusersinmysqucrectivally andcurally、soflowthesteps:1)usethecreateuserstatementtoaddanewuser、指定するhostandastrongpassword.2)補助金を使用して、補助金を使用して、補助すること、

MySQL:複雑な権限を持つ新しいユーザーの追加MySQL:複雑な権限を持つ新しいユーザーの追加May 09, 2025 am 12:09 AM

toaddanewuserwithpermissionsinmysql、followthesesteps:1)createtheuserwithcreateuser'newuser '@' localhost'identifiedifiedifiedifiedby'pa ssword ';。2)grantreadacestoalltablesin'mydatabase'withgrantselectonmydatabase.to'newuser'@'localhost';。3)grantwriteaccessto '

MySQL:文字列データ型とコレクションMySQL:文字列データ型とコレクションMay 09, 2025 am 12:08 AM

MySQLの文字列データ型には、CHAR、VARCHAR、バイナリ、Varbinary、BLOB、およびテキストが含まれます。照合は、文字列の比較とソートを決定します。 1.Charは固定長の文字列に適しており、Varcharは可変長文字列に適しています。 2.バイナリとVarbinaryはバイナリデータに使用され、BLOBとテキストは大規模なオブジェクトデータに使用されます。 3. UTF8MB4_UNICODE_CIなどのルールのソートは、高度と小文字を無視し、ユーザー名に適しています。 UTF8MB4_BINは症例に敏感であり、正確な比較が必要なフィールドに適しています。

MySQL:Varcharsにはどの長さを使用すればよいですか?MySQL:Varcharsにはどの長さを使用すればよいですか?May 09, 2025 am 12:06 AM

最適なMySQLVarcharの列の長さの選択は、データ分析に基づいており、将来の成長を検討し、パフォーマンスの影響を評価し、文字セットの要件を評価する必要があります。 1)データを分析して、典型的な長さを決定します。 2)将来の拡張スペースを予約します。 3)パフォーマンスに対する大きな長さの影響に注意してください。 4)ストレージに対する文字セットの影響を考慮します。これらの手順を通じて、データベースの効率とスケーラビリティを最適化できます。

mysql blob:制限はありますか?mysql blob:制限はありますか?May 08, 2025 am 12:22 AM

mysqlblobshavelimits:tinyblob(255bytes)、blob(65,535bytes)、mediumblob(16,777,215bytes)、andlongblob(4,294,967,295bytes).tousebl難易度:1)PROFFORMANCESANDSTORERGEBLOBSEXTERNALLY;

MySQL:ユーザーの作成を自動化するための最良のツールは何ですか?MySQL:ユーザーの作成を自動化するための最良のツールは何ですか?May 08, 2025 am 12:22 AM

MySQLでユーザーの作成を自動化するための最良のツールとテクノロジーには、次のものがあります。1。MySQLWorkBench、中小サイズの環境に適した、使いやすいがリソース消費量が高い。 2。アンシブル、マルチサーバー環境に適した、シンプルだが急な学習曲線。 3.カスタムPythonスクリプト、柔軟性がありますが、スクリプトセキュリティを確保する必要があります。 4。大規模な環境に適した人形とシェフ、複雑ですがスケーラブル。選択する際には、スケール、学習曲線、統合のニーズを考慮する必要があります。

mysql:blob内で検索できますか?mysql:blob内で検索できますか?May 08, 2025 am 12:20 AM

はい、youcansearchinsideablobinmysqlusingspecifictechniques.1)converttheblobtoautf-8stringwithconvert function andsearchusinglike.2)

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン