MR解析 Mapper/Reducer封装了应用程序的数据处理逻辑。 所有存储在底层分布式文件系统上的数据均要解释成key/value的形式。并交给MR中的map/reduce函数处理,产生另外一些key/value。 Mapper 1)初始化 Mapper继承了JobConfigurable接口。该config方法允许通
MR解析
Mapper/Reducer封装了应用程序的数据处理逻辑。
所有存储在底层分布式文件系统上的数据均要解释成key/value的形式。并交给MR中的map/reduce函数处理,产生另外一些key/value。
Mapper
1)初始化
Mapper继承了JobConfigurable接口。该config方法允许通过JobConf参数对Mapper进行初始化。
2)Map操作
MapReduce会通过InputFormat中RecordReader从InputSplit获取一个key/value对,并交给map()函数处理:
void map(K1 key,V2 value,OutputCollector
3)清理
Mapper通过继承Colseable获得close方法,用户可通过实现该方法对Mapper进行清理。
Mapper类型
ChainMapper 链式作业;IdentityMapper对于输入不进行任何处理,直接输出;InvertMapper 交换key/value位置;
RegexMapper 正则表达式字符串分割;TokenMapper 将字符串分割成若干个token,可用作wordCount的Mapper;
LongSumReducer:以key为组,对long类型的value求累加和。
新的Mapper由接口变为抽象类;不再继承JobConfigurable和Closeable,而是直接在类中添加了setup和cleanup两个方法进行初始化和清理工作。
将参数封装到Context对象中,接口具有良好扩展性。
去掉MapRunnable接口,在Mapper中添加run方法,以方便用户定制map()函数的调用方法。
新API中,Reducer遍历value的迭代器类型变为Iterable
void reduce(KEYIN key,Iteratable values,Context context) throws IOException,InterrupteException{for(VALUEIN value:values){ context.write((KEYOUT) key,(VALUEOUT) value);}}
Partitioner接口的设计与实现
Partitioner的作用是对Mapper产生的中间结果进行分片,以便将同一分组的数据交给同一个Reducer处理,它直接影响Reduce阶段的负载均衡。
只包含一个待实现的方法getPartition。该方法包含3个参数,均由框架自传入,前面2个参数是key/value,第三个参数numPartitions表示每个Mapper的分片数,
也就是Reducer的个数。
HashPartitioner和TotalOrderPartitioner。其中HashPartitioner是默认实现:public int getPartition(K2 key,V2 value,int numReduceTasks){return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks ;}
TotalOrderPartitioner提供了一种基于区间的分片方法,通常用在数据全排序中,归并排序。
在Map阶段,每个MapTask进行局部排序;在Reduce阶段,启动一个ReduceTask进行全局排序。由于作业只能有一个ReduceTask,因此会产生瓶颈。
TotalOrderPartitioner按照大小将数据分成若干个区间,并保证后一个区间的所有数据均大于前一个区间数据。
步骤1:数据采样。
在client端通过采样获取分片的分割点。
采样数据:b,abc,abd,bcd,abcd,efg,hii,afd,rrr,mnk
排序后:abc,abcd,abd,afd,b,bcd,efg,hii,mnk,rrr
如果有4个Reduce Task,则采样数据的四等分点为abd,bcd,mnk
步骤2:Map阶段。
Mapper可采用IdentityMapper直接将输入数据输出,TotalOrderPartitioner将步骤1中获取的分割点保存到trie树中以便快速定位任意一个记录所在的区间,这样每个
Map Task产生R个区间,且区间中间有序。
步骤3:Reduce阶段。
每个Reducer对分配到的区间数据进行局部排序,最终得到全排序数据。
TotalOrderPartitioner有2个典型应用实例;TeraSort和HBase。
HBase内部数据有序,Region之间也有序。
原文地址:深入解析MapReduce架构设计与实现原理–读书笔记(4)MR及Partitioner, 感谢原作者分享。

データベースとプログラミングにおけるMySQLの位置は非常に重要です。これは、さまざまなアプリケーションシナリオで広く使用されているオープンソースのリレーショナルデータベース管理システムです。 1)MySQLは、効率的なデータストレージ、組織、および検索機能を提供し、Web、モバイル、およびエンタープライズレベルのシステムをサポートします。 2)クライアントサーバーアーキテクチャを使用し、複数のストレージエンジンとインデックスの最適化をサポートします。 3)基本的な使用には、テーブルの作成とデータの挿入が含まれ、高度な使用法にはマルチテーブル結合と複雑なクエリが含まれます。 4)SQL構文エラーやパフォーマンスの問題などのよくある質問は、説明コマンドとスロークエリログを介してデバッグできます。 5)パフォーマンス最適化方法には、インデックスの合理的な使用、最適化されたクエリ、およびキャッシュの使用が含まれます。ベストプラクティスには、トランザクションと準備された星の使用が含まれます

MySQLは、中小企業に適しています。 1)中小企業は、顧客情報の保存など、基本的なデータ管理にMySQLを使用できます。 2)大企業はMySQLを使用して、大規模なデータと複雑なビジネスロジックを処理して、クエリのパフォーマンスとトランザクション処理を最適化できます。

INNODBは、次のキーロックメカニズムを通じてファントムの読み取りを効果的に防止します。 1)Next-KeyLockingは、Row LockとGap Lockを組み合わせてレコードとギャップをロックして、新しいレコードが挿入されないようにします。 2)実際のアプリケーションでは、クエリを最適化して分離レベルを調整することにより、ロック競争を削減し、並行性パフォーマンスを改善できます。

MySQLはプログラミング言語ではありませんが、そのクエリ言語SQLにはプログラミング言語の特性があります。1。SQLは条件付き判断、ループ、可変操作をサポートします。 2。ストアドプロシージャ、トリガー、機能を通じて、ユーザーはデータベースで複雑な論理操作を実行できます。

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール
