検索

Hadoop序列化与Writable接口(一)

Jun 07, 2016 pm 04:30 PM
hadoop連載インターフェース

序列化 序列化 (serialization)是指将结构化的对象转化为字节流,以便在网络上传输或者写入到硬盘进行永久存储;相对的 反序列化 (deserialization)是指将字节流转回到结构化对象的过程。 在分布式系统中进程将对象序列化为字节流,通过网络传输到另一进

序列化

序列化(serialization)是指将结构化的对象转化为字节流,以便在网络上传输或者写入到硬盘进行永久存储;相对的反序列化(deserialization)是指将字节流转回到结构化对象的过程。

在分布式系统中进程将对象序列化为字节流,通过网络传输到另一进程,另一进程接收到字节流,通过反序列化转回到结构化对象,以达到进程间通信。在Hadoop中,Mapper,Combiner,Reducer等阶段之间的通信都需要使用序列化与反序列化技术。举例来说,Mapper产生的中间结果(<key: value1 value2...></key:>)需要写入到本地硬盘,这是序列化过程(将结构化对象转化为字节流,并写入硬盘),而Reducer阶段读取Mapper的中间结果的过程则是一个反序列化过程(读取硬盘上存储的字节流文件,并转回为结构化对象),需要注意的是,能够在网络上传输的只能是字节流,Mapper的中间结果在不同主机间洗牌时,对象将经历序列化和反序列化两个过程。

序列化是Hadoop核心的一部分,在Hadoop中,位于org.apache.hadoop.io包中的Writable接口是Hadoop序列化格式的实现。

Writable接口

Hadoop Writable接口是基于DataInput和DataOutput实现的序列化协议,紧凑(高效使用存储空间),快速(读写数据、序列化与反序列化的开销小)。Hadoop中的键(key)和值(value)必须是实现了Writable接口的对象(键还必须实现WritableComparable,以便进行排序)。

以下是Hadoop(使用的是Hadoop 1.1.2)中Writable接口的声明:

package org.apache.hadoop.io;

import java.io.DataOutput;
import java.io.DataInput;
import java.io.IOException;

public interface Writable {
  /** 
   * Serialize the fields of this object to <code>out</code>.
   * 
   * @param out <code>DataOuput</code> to serialize this object into.
   * @throws IOException
   */
  void write(DataOutput out) throws IOException;

  /** 
   * Deserialize the fields of this object from <code>in</code>.  
   * 
   * <p>For efficiency, implementations should attempt to re-use storage in the 
   * existing object where possible.</p>
   * 
   * @param in <code>DataInput</code> to deseriablize this object from.
   * @throws IOException
   */
  void readFields(DataInput in) throws IOException;
}

Writable类

Hadoop自身提供了多种具体的Writable类,包含了常见的Java基本类型(boolean、byte、short、int、float、long和double等)和集合类型(BytesWritable、ArrayWritable和MapWritable等)。这些类型都位于org.apache.hadoop.io包中。

writable-classes

(图片来源:safaribooksonline.com)

定制Writable类

虽然Hadoop内建了多种Writable类提供用户选择,Hadoop对Java基本类型的包装Writable类实现的RawComparable接口,使得这些对象不需要反序列化过程,便可以在字节流层面进行排序,从而大大缩短了比较的时间开销,但是当我们需要更加复杂的对象时,Hadoop的内建Writable类就不能满足我们的需求了(需要注意的是Hadoop提供的Writable集合类型并没有实现RawComparable接口,因此也不满足我们的需要),这时我们就需要定制自己的Writable类,特别将其作为键(key)的时候更应该如此,以求达到更高效的存储和快速的比较。

下面的实例展示了如何定制一个Writable类,一个定制的Writable类首先必须实现Writable或者WritableComparable接口,然后为定制的Writable类编写write(DataOutput out)和readFields(DataInput in)方法,来控制定制的Writable类如何转化为字节流(write方法)和如何从字节流转回为Writable对象。

package com.yoyzhou.weibo;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.VLongWritable;
import org.apache.hadoop.io.Writable;

/**
 *This MyWritable class demonstrates how to write a custom Writable class 
 *
 **/
public class MyWritable implements Writable{
		
		
	private VLongWritable field1;
	private VLongWritable field2;
		
	public MyWritable(){
		this.set(new VLongWritable(), new VLongWritable());
	}
		
		
	public MyWritable(VLongWritable fld1, VLongWritable fld2){
			
		this.set(fld1, fld2);
			
	}
		
	public void set(VLongWritable fld1, VLongWritable fld2){
		//make sure the smaller field is always put as field1
		if(fld1.get() o is a MyWritable with the same values. */
	@Override
	public boolean equals(Object o) {
		 if (!(o instanceof MyWritable))
		    return false;
		
		    MyWritable other = (MyWritable)o;
		    return field1.equals(other.field1) && field2.equals(other.field2);
		
	}
		
	@Override
	public int hashCode(){
			
		return field1.hashCode() * 163 + field2.hashCode();
	}
		
	@Override
	public String toString() {
		return field1.toString() + "\t" + field2.toString();
	}
		
}

未完待续,下一篇中将介绍Writable对象序列化为字节流时占用的字节长度以及其字节序列的构成。

参考资料

Tom White, Hadoop: The Definitive Guide, 3rd Edition

---To Be Continued---

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
複数の単一列インデックスに対して複合インデックスをいつ使用する必要がありますか?複数の単一列インデックスに対して複合インデックスをいつ使用する必要がありますか?Apr 11, 2025 am 12:06 AM

データベースの最適化では、クエリ要件に従ってインデックス作成戦略を選択する必要があります。1。クエリに複数の列が含まれ、条件の順序が固定されている場合、複合インデックスを使用します。 2。クエリに複数の列が含まれているが、条件の順序が修正されていない場合、複数の単一列インデックスを使用します。複合インデックスは、マルチコラムクエリの最適化に適していますが、単一列インデックスは単一列クエリに適しています。

MySQLでスロークエリを識別して最適化する方法は? (スロークエリログ、Performance_schema)MySQLでスロークエリを識別して最適化する方法は? (スロークエリログ、Performance_schema)Apr 10, 2025 am 09:36 AM

MySQLスロークエリを最適化するには、slowquerylogとperformance_schemaを使用する必要があります。1。LowerQueryLogを有効にし、しきい値を設定して、スロークエリを記録します。 2。performance_schemaを使用してクエリの実行の詳細を分析し、パフォーマンスのボトルネックを見つけて最適化します。

MySQLおよびSQL:開発者にとって不可欠なスキルMySQLおよびSQL:開発者にとって不可欠なスキルApr 10, 2025 am 09:30 AM

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。

MySQL非同期マスタースレーブレプリケーションプロセスを説明してください。MySQL非同期マスタースレーブレプリケーションプロセスを説明してください。Apr 10, 2025 am 09:30 AM

MySQL非同期マスタースレーブレプリケーションにより、BINLOGを介したデータの同期が可能になり、読み取りパフォーマンスと高可用性が向上します。 1)マスターサーバーレコードはBinlogに変更されます。 2)スレーブサーバーは、I/Oスレッドを介してBINLOGを読み取ります。 3)サーバーSQLスレッドは、BINLOGを適用してデータを同期させます。

MySQL:簡単な学習のためのシンプルな概念MySQL:簡単な学習のためのシンプルな概念Apr 10, 2025 am 09:29 AM

MySQLは、オープンソースのリレーショナルデータベース管理システムです。 1)データベースとテーブルの作成:createdatabaseおよびcreateTableコマンドを使用します。 2)基本操作:挿入、更新、削除、選択。 3)高度な操作:参加、サブクエリ、トランザクション処理。 4)デバッグスキル:構文、データ型、およびアクセス許可を確認します。 5)最適化の提案:インデックスを使用し、選択*を避け、トランザクションを使用します。

MySQL:ユーザーフレンドリーなデータベースの紹介MySQL:ユーザーフレンドリーなデータベースの紹介Apr 10, 2025 am 09:27 AM

MySQLのインストールと基本操作には、次のものが含まれます。1。mysqlをダウンロードしてインストールし、ルートユーザーパスワードを設定します。 2。sqlコマンドを使用して、createdatabaseやcreateTableなどのデータベースとテーブルを作成します。 3. CRUD操作を実行し、挿入、選択、更新、コマンドを削除します。 4.パフォーマンスを最適化し、複雑なロジックを実装するためのインデックスとストアドプロシージャを作成します。これらの手順を使用すると、MySQLデータベースをゼロから構築および管理できます。

InnoDBバッファープールはどのように機能し、なぜパフォーマンスに不可欠なのですか?InnoDBバッファープールはどのように機能し、なぜパフォーマンスに不可欠なのですか?Apr 09, 2025 am 12:12 AM

Innodbbufferpoolは、データとインデックスページをメモリにロードすることにより、MySQLデータベースのパフォーマンスを向上させます。 1)データページは、ディスクI/Oを削減するためにBufferPoolにロードされます。 2)汚れたページは、定期的にディスクにマークされ、リフレッシュされます。 3)LRUアルゴリズム管理データページの排除。 4)読み出しメカニズムは、可能なデータページを事前にロードします。

MySQL:初心者向けのデータ管理の容易さMySQL:初心者向けのデータ管理の容易さApr 09, 2025 am 12:07 AM

MySQLは、インストールが簡単で、強力で管理しやすいため、初心者に適しています。 1.さまざまなオペレーティングシステムに適した、単純なインストールと構成。 2。データベースとテーブルの作成、挿入、クエリ、更新、削除などの基本操作をサポートします。 3.参加オペレーションやサブクエリなどの高度な機能を提供します。 4.インデックス、クエリの最適化、テーブルパーティション化により、パフォーマンスを改善できます。 5。データのセキュリティと一貫性を確保するために、バックアップ、リカバリ、セキュリティ対策をサポートします。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。