FamilyFilter 用于过滤Family package com.fatkun.filter;import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.hbase.HBaseConfiguration;import org.apache.hadoop.hbase.HColumnDescriptor;import org.apac
FamilyFilter 用于过滤Family
package com.fatkun.filter; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.HColumnDescriptor; import org.apache.hadoop.hbase.HTableDescriptor; import org.apache.hadoop.hbase.client.Get; import org.apache.hadoop.hbase.client.HBaseAdmin; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.ResultScanner; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.filter.BinaryComparator; import org.apache.hadoop.hbase.filter.CompareFilter; import org.apache.hadoop.hbase.filter.FamilyFilter; import org.apache.hadoop.hbase.filter.Filter; import org.apache.hadoop.hbase.util.Bytes; public class TestHbaseFamilyFilter { String tableName = "test_family_filter"; Configuration config = HBaseConfiguration.create(); /** * 部分代码来自hbase权威指南 * @throws IOException */ public void testRowFilter() throws IOException { HTable table = new HTable(config, tableName); Scan scan = new Scan(); System.out.println("只列出小于data2的列"); Filter filter1 = new FamilyFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("data2"))); scan.setFilter(filter1); ResultScanner scanner1 = table.getScanner(scan); for (Result res : scanner1) { System.out.println(res); } scanner1.close(); System.out.println("get也可以设置filter"); Get get1 = new Get(Bytes.toBytes("row005")); get1.setFilter(filter1); Result result1 = table.get(get1); System.out.println("Result of get(): " + result1); } /** * 初始化数据 */ public void init() { // 创建表和初始化数据 try { HBaseAdmin admin = new HBaseAdmin(config); if (!admin.tableExists(tableName)) { HTableDescriptor htd = new HTableDescriptor(tableName); HColumnDescriptor hcd1 = new HColumnDescriptor("data1"); htd.addFamily(hcd1); HColumnDescriptor hcd2 = new HColumnDescriptor("data2"); htd.addFamily(hcd2); HColumnDescriptor hcd3 = new HColumnDescriptor("data3"); htd.addFamily(hcd3); admin.createTable(htd); } HTable table = new HTable(config, tableName); table.setAutoFlush(false); int count = 50; for (int i = 1; i <p class="copyright"> 原文地址:Hbase FamilyFilter, 感谢原作者分享。 </p>

随着大数据时代的到来,数据处理和存储变得越来越重要,如何高效地管理和分析大量的数据也成为企业面临的挑战。Hadoop和HBase作为Apache基金会的两个项目,为大数据存储和分析提供了一种解决方案。本文将介绍如何在Beego中使用Hadoop和HBase进行大数据存储和查询。一、Hadoop和HBase简介Hadoop是一个开源的分布式存储和计算系统,它可

依赖:org.springframework.dataspring-data-hadoop-hbase2.5.0.RELEASEorg.apache.hbasehbase-client1.1.2org.springframework.dataspring-data-hadoop2.5.0.RELEASE增加配置官方提供的方式是通过xml方式,简单改写后如下:@ConfigurationpublicclassHBaseConfiguration{@Value("${hbase.zooke

随着大数据时代的到来,海量数据的存储和处理显得尤为重要。在NoSQL数据库方面,HBase是目前广泛应用的一种解决方案。Go语言作为一种静态强类型编程语言,由于其语法简单、性能优秀,被越来越多地应用于云计算、网站开发和数据科学等领域。本文将介绍如何在Go语言中使用HBase来实现高效的NoSQL数据库应用。HBase介绍HBase是一个高可扩展、高可靠性、基

在Beego框架中使用HBase进行数据存储和查询随着互联网时代的不断发展,数据储存和查询变得越来越关键。大数据时代来临,各种数据源都在各自不同的领域占据着重要地位,其中非关系型数据库是一种在数据存储和查询方面优势明显的数据库,而HBase是一种基于Hadoop的分布式非关系型数据库。本文将介绍如何在Beego框架中使用HBase进行数据存储和查询。一、H

如何使用Java开发一个基于HBase的NoSQL数据库应用引言:随着大数据时代的到来,NoSQL数据库成为处理海量数据的重要工具之一。HBase作为一种开源的分布式NoSQL数据库系统,在大数据领域具有广泛的应用。本文将介绍如何使用Java来开发基于HBase的NoSQL数据库应用,并提供具体的代码示例。一、HBase介绍:HBase是基于Hadoop的分

Workerman是一款高性能的PHPsocket框架,它的特点是可以承载大量的并发连接。与传统的PHP框架不同的是,Workerman不依赖于Apache或Nginx等Web服务器,而是通过开启一个PHP进程,独自运行整个应用程序。Workerman具有极高的运行效率和更好的负载能力。与此同时,HBase是一个分布式的NoSQL数据库系统,广泛应用于大数

随着互联网应用和数据量的不断增长,传统的关系型数据库已经不能满足存储和处理海量数据的需求。而NoSQL(NotOnlySQL)作为一种新型的数据库管理系统,其能够在海量数据存储和处理方面具有显著的优势,得到越来越多的关注和应用。在NoSQL数据库中,ApacheHBase是一个非常流行的开源分布式数据库,它基于Google的BigTable思想设计,具

HBase是一个基于Hadoop的分布式存储系统,旨在存储和处理大规模结构化数据。为了优化它的读写性能,HBase提供了多种缓存机制,可以通过合理的配置来提高查询效率,减少读写延迟。本文将介绍HBase缓存技术以及如何进行配置。HBase缓存种类HBase提供了两种基本缓存机制:块缓存(BlockCache)和MemStore缓存(也称为写缓存)。块缓存是在


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
