FamilyFilter 用于过滤Family package com.fatkun.filter;import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.hbase.HBaseConfiguration;import org.apache.hadoop.hbase.HColumnDescriptor;import org.apac
FamilyFilter 用于过滤Family
package com.fatkun.filter; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.HColumnDescriptor; import org.apache.hadoop.hbase.HTableDescriptor; import org.apache.hadoop.hbase.client.Get; import org.apache.hadoop.hbase.client.HBaseAdmin; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.ResultScanner; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.filter.BinaryComparator; import org.apache.hadoop.hbase.filter.CompareFilter; import org.apache.hadoop.hbase.filter.FamilyFilter; import org.apache.hadoop.hbase.filter.Filter; import org.apache.hadoop.hbase.util.Bytes; public class TestHbaseFamilyFilter { String tableName = "test_family_filter"; Configuration config = HBaseConfiguration.create(); /** * 部分代码来自hbase权威指南 * @throws IOException */ public void testRowFilter() throws IOException { HTable table = new HTable(config, tableName); Scan scan = new Scan(); System.out.println("只列出小于data2的列"); Filter filter1 = new FamilyFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("data2"))); scan.setFilter(filter1); ResultScanner scanner1 = table.getScanner(scan); for (Result res : scanner1) { System.out.println(res); } scanner1.close(); System.out.println("get也可以设置filter"); Get get1 = new Get(Bytes.toBytes("row005")); get1.setFilter(filter1); Result result1 = table.get(get1); System.out.println("Result of get(): " + result1); } /** * 初始化数据 */ public void init() { // 创建表和初始化数据 try { HBaseAdmin admin = new HBaseAdmin(config); if (!admin.tableExists(tableName)) { HTableDescriptor htd = new HTableDescriptor(tableName); HColumnDescriptor hcd1 = new HColumnDescriptor("data1"); htd.addFamily(hcd1); HColumnDescriptor hcd2 = new HColumnDescriptor("data2"); htd.addFamily(hcd2); HColumnDescriptor hcd3 = new HColumnDescriptor("data3"); htd.addFamily(hcd3); admin.createTable(htd); } HTable table = new HTable(config, tableName); table.setAutoFlush(false); int count = 50; for (int i = 1; i <p class="copyright"> 原文地址:Hbase FamilyFilter, 感谢原作者分享。 </p>

mysqlstringTypesimpactStorageandperformanceAseasfollows:1)churisfixed-regents、whuscanbasterbutlessspace-efficient.2)varcharisvariaible、morespace-efficient-butpotentiallyslower.3)Textisforgergetext、storedoutext、

mysqlstringTypesincludevarchar、テキスト、char、列挙、およびセット。1)varcharisSatileforvariaible-lengthstringsuptoaspoecifedlimit.2)TextisidealforLargetExtStorageWithDeinLength.3)charispixed-consinterconsistentalikodes.4)

mysqloffersvariousstringdatatypes:1)charfixed-lengthstrings、2)varcharforvariable-lengthtext、3)binaryandvartyforbinarydata、4)blobandtextforlargedata、and5)enumandsetforControlledinput.

tograntpermissionstonewmysqlusers、フォローステープ:1)Accessmysqlasauserwithsufthiveerprivileges、2)createanewuser withthecreateusercommand、3)usethegrantcommandtospecifypermissionsionsionsionsionsionsionsionsionsionsionselect、挿入、挿入、挿入、更新、4)

toadduusersinmysqucrectivally andcurally、soflowthesteps:1)usethecreateuserstatementtoaddanewuser、指定するhostandastrongpassword.2)補助金を使用して、補助金を使用して、補助すること、

toaddanewuserwithpermissionsinmysql、followthesesteps:1)createtheuserwithcreateuser'newuser '@' localhost'identifiedifiedifiedifiedby'pa ssword ';。2)grantreadacestoalltablesin'mydatabase'withgrantselectonmydatabase.to'newuser'@'localhost';。3)grantwriteaccessto '

MySQLの文字列データ型には、CHAR、VARCHAR、バイナリ、Varbinary、BLOB、およびテキストが含まれます。照合は、文字列の比較とソートを決定します。 1.Charは固定長の文字列に適しており、Varcharは可変長文字列に適しています。 2.バイナリとVarbinaryはバイナリデータに使用され、BLOBとテキストは大規模なオブジェクトデータに使用されます。 3. UTF8MB4_UNICODE_CIなどのルールのソートは、高度と小文字を無視し、ユーザー名に適しています。 UTF8MB4_BINは症例に敏感であり、正確な比較が必要なフィールドに適しています。

最適なMySQLVarcharの列の長さの選択は、データ分析に基づいており、将来の成長を検討し、パフォーマンスの影響を評価し、文字セットの要件を評価する必要があります。 1)データを分析して、典型的な長さを決定します。 2)将来の拡張スペースを予約します。 3)パフォーマンスに対する大きな長さの影響に注意してください。 4)ストレージに対する文字セットの影響を考慮します。これらの手順を通じて、データベースの効率とスケーラビリティを最適化できます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ドリームウィーバー CS6
ビジュアル Web 開発ツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 中国語版
中国語版、とても使いやすい
