検索
ホームページデータベースmysql チュートリアル将Hadoop RPC框架应用于多节点任务调度

将Hadoop RPC框架应用于多节点任务调度

Jun 07, 2016 pm 04:29 PM
hadooprpcタスクフレームノードスケジュール設定

在hadoop中,主从节点之间保持着心跳通信,用于传输节点状态信息、任务调度信息以及节点动作信息等等。 hdfs的namenode与datanode,mapreduce的jobtracker与tasktracker,hbase的hmaster与 regionserver之间的通信,都是基于hadoop RPC。Hadoop RPC是hadoop

在hadoop中,主从节点之间保持着心跳通信,用于传输节点状态信息、任务调度信息以及节点动作信息等等。 hdfs的namenode与datanode,mapreduce的jobtracker与tasktracker,hbase的hmaster与 regionserver之间的通信,都是基于hadoop RPC。Hadoop RPC是hadoop里非常基础的通信框架。hadoop 2.0以前hadoop RPC的数据序列化是通过实现自己定义的Writable接口实现,而从hadoop 2.0开始,数据的序列化工作交给了ProtocolBuffer去做。关于Hadoop RPC的实现原理已经有很多文章进行了详细的介绍(源码级强力分析hadoop的RPC机制,Hadoop基于Protocol Buffer的RPC实现代码分析-Server端,带有HA功能的Hadoop Client端RPC实现原理与代码分析),这里就不在赘述了。下面就直接引入问题和方案吧。

问题

工作中经常需要在定时任务系统上写一些定时任务,随着业务规模的增长和扩大,需要定时处理的任务越来越多,任务之间的执行间隔越来越小,某一时间段内(比如0点、整点或半点)执行的任务会越来越密集,只在一台机器上执行这些任务的话,会出现较大的风险:

  • 任务并发度较高时,单机的系统资源将成为瓶颈
  • 如果一个任务的运行占用了整个机器的大部分资源,比如sql查询耗费巨大内存和CPU资源,将直接影响其他任务的运行
  • 任务失败后,如果仍然在同一台节点自动重新执行,失败率较高
  • 机器宕机后,必须第一时间重启机器或重新部署定时任务系统,所有任务都不能按时执行
  • 等等

方案

可想而知的是,可以通过将定时任务系统进行分布式改造,使用多个节点执行任务,将任务分发到不同节点上进行处理,并且完善失败重试机制,从而提高系统稳定性,实现任务系统的高可靠。

既然是在多个节点之间分发任务,肯定得有个任务的管理者(主节点),在我们现有的系统中,也就是一套可以部署定时任务的web系统,任务代码更新后,部署好这套web系统,即可通过web页面设置定时任务并且进行调度(在单个节点上执行)。执行任务的节点(子节点)有多个以后,如何分发任务到子节点呢,我们可以把任务的信息封装成一个bean,通过RPC发布给子节点,子节点通过这个任务bean获得任务信息,并在指定的时刻执行任务。同时,子节点可以通过与主节点的心跳通信将节点状态和执行任务的情况告诉主节点。这样其实就与hadoop mapreduce分发任务有点相似了,呵呵,这里主节点与子节点之间的通信,我们就可以通过Hadoop RPC框架来实现了,不同的是,我们分发的任务是定时任务,发布任务时需要将任务的定时信息一并发给子节点。

实现

单点的定时任务系统是基于Quartz的,在分布式环境下,可以继续基于Quartz进行改造,任务的定时信息可以通过Quartz中的JobDetail和Trigger对象来描述并封装,加上任务执行的入口类信息,再通过RPC由主节点发给子节点。子节点收到封装好的任务信息对象后,再构造JobDetail和Trigger,设置好启动时间后,通过入口类启动任务。下面是一个简单的demo。

以下是一个简单的定时任务信息描述对象CronJobInfo,包括JobDetailInfo和TriggerInfo两个属性:

/**
* 定时任务信息,包括任务信息和触发器信息
*/
public class CronJobInfo implements Writable
{
    private JobDetailInfo jobDetailInfo = new JobDetailInfo();
    private TriggerInfo triggerInfo = new TriggerInfo();
    @Override
    public void readFields(DataInput in) throws IOException
    {
        jobDetailInfo.readFields(in);
        triggerInfo.readFields(in);
    }
    @Override
    public void write(DataOutput out) throws IOException
    {
        jobDetailInfo.write(out);
        triggerInfo.write(out);
    }
    // getters and setters...
}

任务信息JobDetailInfo,由主节点构造,子节点解析构造JobDetail对象:

public class JobDetailInfo implements Writable
{
    private String name; // 任务名称
    private String group = Scheduler.DEFAULT_GROUP; // 任务组
    private String description; // 任务描述
    private Class jobClass; // 任务的启动类
    private JobDataMap jobDataMap; // 任务所需的参数,用来给作业提供数据支持的数据结构
    private boolean volatility = false; // 重启应用之后是否删除任务的相关信息,
    private boolean durability = false; // 任务完成之后是否依然保留到数据库
    private boolean shouldRecover = false; // 应用重启之后时候忽略过期任务
    @Override
    public void readFields(DataInput in) throws IOException
    {
        name = WritableUtils.readString(in);
        group = WritableUtils.readString(in);
        description = WritableUtils.readString(in);
        String className = WritableUtils.readString(in);
        if (className != null)
        {
          try
          {
             jobClass = Class.forName(new String(className));
          }
          catch (ClassNotFoundException e)
          {
             e.printStackTrace();
          }
        }
        int dataMapSize = WritableUtils.readVInt(in);
        while (dataMapSize-- > 0)
        {
           String key = WritableUtils.readString(in);
           String value = WritableUtils.readString(in);
           jobDataMap.put(key, value);
        }
        volatility = in.readBoolean();
        durability = in.readBoolean();
        shouldRecover = in.readBoolean();
    }
    @Override
    public void write(DataOutput out) throws IOException
    {
        WritableUtils.writeString(out, name);
        WritableUtils.writeString(out, group);
        WritableUtils.writeString(out, description);
        WritableUtils.writeString(out, jobClass.getName());
        if (jobDataMap == null)
            WritableUtils.writeVInt(out, 0);
        else
        {
            WritableUtils.writeVInt(out, jobDataMap.size());
            for (Object k : jobDataMap.keySet())
            {
                WritableUtils.writeString(out, k.toString());
                WritableUtils.writeString(out, jobDataMap.get(k).toString());
            }
        }
        out.writeBoolean(volatility);
        out.writeBoolean(durability);
        out.writeBoolean(shouldRecover);
   }
   //getters and setters
   //.....
}

任务触发器信息TriggerInfo ,由主节点构造,子节点解析构造Trigger对象:

public class TriggerInfo implements Writable
{
    private String name; // trigger名称
    private String group = Scheduler.DEFAULT_GROUP; // triger组名称
    private String description; // trigger描述
    private Date startTime; // 启动时间
    private Date endTime; // 结束时间
    private long repeatInterval; // 重试时间间隔
    private int repeatCount; //重试次数
    @Override
    public void readFields(DataInput in) throws IOException
    {
       name = WritableUtils.readString(in);
       group = WritableUtils.readString(in);
       description = WritableUtils.readString(in);
       long start = in.readLong();
       startTime = start==0 ? null : new Date(start);
       long end = in.readLong();
       endTime = end==0 ? null : new Date(end);
       repeatInterval = in.readLong();
       repeatCount = in.readInt();
    }
    @Override
    public void write(DataOutput out) throws IOException
    {
       WritableUtils.writeString(out, name);
       WritableUtils.writeString(out, group);
       WritableUtils.writeString(out, description);
       out.writeLong(startTime == null ? 0 : startTime.getTime());
       out.writeLong(endTime == null ? 0 : endTime.getTime());
       out.writeLong(repeatInterval);
       out.writeInt(repeatCount);
    }
    //getters and setters
    //.....
}

主从节点通信的协议:

public interface TaskProtocol extends VersionedProtocol
{
	public CronJobInfo hearbeat();
}

在这个demo中,主节点启动后,启动RPC server线程,等待客户端(子节点)的连接,当客户端调用heartbeat方法时,主节点将会生成一个任务信息返回给客户端:

public class TaskScheduler implements TaskProtocol
{
	private Logger logger = Logger.getLogger(getClass());
	private Server server;
	public TaskScheduler()
	{
		try
		{
			server = RPC.getServer(this, "192.168.1.101", 8888, new Configuration());
			server.start();
			server.join();
		}
		catch (UnknownHostException e)
		{
			e.printStackTrace();
		}
		catch (IOException e)
		{
			e.printStackTrace();
		}
		catch (InterruptedException e)
		{
			e.printStackTrace();
		}
	}
	@Override
	public long getProtocolVersion(String arg0, long arg1) throws IOException
	{
		return 1;
	}
	@Override
	public CronJobInfo generateCronJob()
	{
		// 1、创建JobDetial对象
		JobDetailInfo detail = new JobDetailInfo();
		// 设置工作项
		detail.setJobClass(DemoTask.class);
		detail.setName("MyJob_1");
		detail.setGroup("JobGroup_1");
		// 2、创建Trigger对象
		TriggerInfo trigger = new TriggerInfo();
		trigger.setName("Trigger_1");
		trigger.setGroup("Trigger_Group_1");
		trigger.setStartTime(new Date());
		// 设置重复停止时间,并销毁该Trigger对象
		Calendar c = Calendar.getInstance();
		c.setTimeInMillis(System.currentTimeMillis() + 1000 * 1L);
		trigger.setEndTime(c.getTime());
		// 设置重复间隔时间
		trigger.setRepeatInterval(1000 * 1L);
		// 设置重复执行次数
		trigger.setRepeatCount(3);
		CronJobInfo info = new CronJobInfo();
		info.setJobDetailInfo(detail);
		info.setTriggerInfo(trigger);
		return info;
	}
	public static void main(String[] args)
	{
		TaskScheduler ts = new TaskScheduler();
	}
}

demo任务类,打印信息:

public class DemoTask implements Job
{
	public void execute(JobExecutionContext context)
			throws JobExecutionException
	{
		System.out.println(this + ": executing task @" + new Date());
	}
}

子节点demo,启动后连接主节点,远程调用generateCronJob方法,获得一个任务描述信息,并启动定时任务

public class TaskRunner
{
	private Logger logger = Logger.getLogger(getClass());
	private TaskProtocol proxy;
	public TaskRunner()
	{
		InetSocketAddress addr = new InetSocketAddress("localhost", 8888);
		try
		{
			proxy = (TaskProtocol) RPC.waitForProxy(TaskProtocol.class, 1, addr,
					new Configuration());
		}
		catch (IOException e)
		{
			e.printStackTrace();
		}
	}
	public void close()
	{
		RPC.stopProxy(proxy);
	}
	/**
	 * 从server获取一个定时任务
	 */
	public void getCronJob()
	{
		CronJobInfo info = proxy.generateCronJob();
		JobDetail jobDetail = getJobDetail(info.getJobDetailInfo());
		SimpleTrigger trigger = getTrigger(info.getTriggerInfo());
		// 创建Scheduler对象,并配置JobDetail和Trigger对象
		SchedulerFactory sf = new StdSchedulerFactory();
		Scheduler scheduler = null;
		try
		{
			scheduler = sf.getScheduler();
			scheduler.scheduleJob(jobDetail, trigger);
			// 执行启动操作
			scheduler.start();
		}
		catch (SchedulerException e)
		{
			e.printStackTrace();
		}
	}
	/**
	 * @param jobDetailInfo
	 * @return
	 */
	private JobDetail getJobDetail(JobDetailInfo info)
	{
		JobDetail detail = new JobDetail();
		detail.setName(info.getName());
		detail.setGroup(info.getGroup());
		detail.setDescription(info.getDescription());
		detail.setJobClass(info.getJobClass());
		detail.setJobDataMap(info.getJobDataMap());
		detail.setRequestsRecovery(info.isShouldRecover());
		detail.setDurability(info.isDurability());
		detail.setVolatility(info.isVolatility());
		logger.info("client get jobdetail:" + detail);
		return detail;
	}
	/**
	 * @param triggerInfo
	 * @return
	 */
	private SimpleTrigger getTrigger(TriggerInfo info)
	{
		SimpleTrigger trigger = new SimpleTrigger();
		trigger.setName(info.getName());
		trigger.setGroup(info.getGroup());
		trigger.setDescription(info.getDescription());
		trigger.setStartTime(info.getStartTime());
		trigger.setEndTime(info.getEndTime());
		trigger.setRepeatInterval(info.getRepeatInterval());
		trigger.setRepeatCount(info.getRepeatCount());
		logger.info("client get trigger:" + trigger);
		return trigger;
	}
	public static void main(String[] args)
	{
		TaskRunner t = new TaskRunner();
		t.getCronJob();
		t.close();
	}
}

先启动TaskScheduler,再启动TaskRunner,结果如下:

  • TaskScheduler:

2013-01-20 15:42:21,661 [Socket Reader #1 for port 8888] INFO? [org.apache.hadoop.ipc.Server] – Starting Socket Reader #1 for port 8888
2013-01-20 15:42:21,662 [main] INFO? [org.apache.hadoop.ipc.metrics.RpcMetrics] – Initializing RPC Metrics with hostName=TaskScheduler, port=8888
2013-01-20 15:42:21,706 [main] INFO? [org.apache.hadoop.ipc.metrics.RpcDetailedMetrics] – Initializing RPC Metrics with hostName=TaskScheduler, port=8888
2013-01-20 15:42:21,710 [IPC Server listener on 8888] INFO? [org.apache.hadoop.ipc.Server] – IPC Server listener on 8888: starting
2013-01-20 15:42:21,711 [IPC Server Responder] INFO? [org.apache.hadoop.ipc.Server] – IPC Server Responder: starting
2013-01-20 15:42:21,711 [IPC Server handler 0 on 8888] INFO? [org.apache.hadoop.ipc.Server] – IPC Server handler 0 on 8888: starting
2013-01-20 15:42:24,084 [IPC Server handler 0 on 8888] INFO? [org.mh.rpc.task.TaskScheduler] – generate a task: org.mh.rpc.task.JobDetailInfo@1f26605

  • TaskRunner:

2013-01-20 15:42:26,323 [main] INFO? [org.mh.rpc.task.TaskRunner] – client get jobdetail:JobDetail ‘JobGroup_1.MyJob_1′:? jobClass: ‘org.mh.rpc.quartz.GetSumTask isStateful: false isVolatile: false isDurable: false requestsRecovers: false
2013-01-20 15:42:26,329 [main] INFO? [org.mh.rpc.task.TaskRunner] – client get trigger:Trigger ‘Trigger_Group_1.Trigger_1′:? triggerClass: ‘org.quartz.SimpleTrigger isVolatile: false calendar: ‘null’ misfireInstruction: 0 nextFireTime: null
2013-01-20 15:42:26,382 [main] INFO? [org.quartz.simpl.SimpleThreadPool] – Job execution threads will use class loader of thread: main
2013-01-20 15:42:26,411 [main] INFO? [org.quartz.core.SchedulerSignalerImpl] – Initialized Scheduler Signaller of type: class org.quartz.core.SchedulerSignalerImpl
2013-01-20 15:42:26,411 [main] INFO? [org.quartz.core.QuartzScheduler] – Quartz Scheduler v.1.6.5 created.
2013-01-20 15:42:26,413 [main] INFO? [org.quartz.simpl.RAMJobStore] – RAMJobStore initialized.
2013-01-20 15:42:26,413 [main] INFO? [org.quartz.impl.StdSchedulerFactory] – Quartz scheduler ‘DefaultQuartzScheduler’ initialized from default resource file in Quartz package: ‘quartz.properties’
2013-01-20 15:42:26,413 [main] INFO? [org.quartz.impl.StdSchedulerFactory] – Quartz scheduler version: 1.6.5
2013-01-20 15:42:26,415 [main] INFO? [org.quartz.core.QuartzScheduler] – Scheduler DefaultQuartzScheduler_$_NON_CLUSTERED started.
org.mh.rpc.quartz.DemoTask@1b66b06: executing task @Sun Jan 20 15:42:26 CST 2013

上面是一个简单的demo,演示了如何通过RPC将任务调度给节点去执行,对于Quartz来说,任务的形式可以千变万化,关键就看怎么去使用了,分发到多个节点上执行的话,就还需要对任务的信息做更多的封装了。

(本文已被阅读2次)

将Hadoop RPC框架应用于多节点任务调度 在hadoop中,主从节点之间保持着心跳通信,用于传输节点状态信息、任务调度信息以及节点动作信息等等。 hdfs的namenode与datanode,mapreduce的jobtracker与tasktracker,hbase的hmaster与 regionserver之间的通信,都是基于hadoop RPC。Hadoop RPC是hadoop里非常基础的通信框架。hadoop 2.0以前hadoop RPC的数据序列化是通过实现自己定义的Writable接口实现,而从hadoop 2.0开始,数据的序列化工作交给了ProtocolBuffer去做。关于Hadoop RPC的实现原理已经有很多文章进行了详细的介绍(源码级强力分析hadoop的RPC机制,Hadoop基于Protocol Buffer的RPC实现代码分析-Server端,带有HA功能的Hadoop Client端RPC实现原理与代码分析),这里就不在赘述了。下面就直接引入问题和方案吧。 问题 工作中经常需要在定时任务系统上写一些定时任务,随着业务规模的增长和扩大,需要定时处理的任务越来越多,任务之间的执行间隔越来越小,某一时间段内(比如0点、整点或半点)执行的任务会越来越密集,只在一台机器上执行这些任务的话,会出现较大的风险: 任务并发度较高时,单机的系统资源将成为瓶颈 如果一个任务的运行占用了整个机器的大部分资源,比如sql查询耗费巨大内存和CPU资源,将直接影响其他任务的运行 任务失败后,如果仍然在同一台节点自动重新执行,失败率较高 机器宕机后,必须第一时间重启机器或重新部署定时任务系统,所有任务都不能按时执行 等等 方案 可想而知的是,可以通过将定时任务系统进行分布式改造,使用多个节点执行任务,将任务分发到不同节点上进行处理,并且完善失败重试机制,从而提高系统稳定性,实现任务系统的高可靠。 既然是在多个节点之间分发任务,肯定得有个任务的管理者(主节点),在我们现有的系统中,也就是一套可以部署定时任务的web系统,任务代码更新后,部署好这套web系统,即可通过web页面设置定时任务并且进行调度(在单个节点上执行)。执行任务的节点(子节点)有多个以后,如何分发任务到子节点呢,我们可以把任务的信息封装成一个bean,通过RPC发布给子节点,子节点通过这个任务bean获得任务信息,并在指定的时刻执行任务。同时,子节点可以通过与主节点的心跳通信将节点状态和执行任务的情况告诉主节点。这样其实就与hadoop mapreduce分发任务有点相似了,呵呵,这里主节点与子节点之间的通信,我们就可以通过Hadoop RPC框架来实现了,不同的是,我们分发的任务是定时任务,发布任务时需要将任务的定时信息一并发给子节点。 实现 单点的定时任务系统是基于Quartz的,在分布式环境下,可以继续基于Quartz进行改造,任务的定时信息可以通过Quartz中的JobDetail和Trigger对象来描述并封装,加上任务执行的入口类信息,再通过RPC由主节点发给子节点。子节点收到封装好的任务信息对象后,再构造JobDetail和Trigger,设置好启动时间后,通过入口类启动任务。下面是一个简单的demo。 以下是一个简单的定时任务信息描述对象CronJobInfo,包括JobDetailInfo和TriggerInfo两个属性: 任务信息JobDetailInfo,由主节点构造,子节点解析构造JobDetail对象: 任务触发器信息TriggerInfo ,由主节点构造,子节点解析构造Trigger对象: 主从节点通信的协议: 在这个demo中,主节点启动后,启动RPC server线程,等待客户端(子节点)的连接,当客户端调用heartbeat方法时,主节点将会生成一个任务信息返回给客户端: demo任务类,打印信息: 子节点demo,启动后连接主节点,远程调用generateCronJob方法,获得一个任务描述信息,并启动定时任务 先启动TaskScheduler,再启动TaskRunner,结果如下: TaskScheduler: 2013-01-20 15:42:21,661 [Socket Reader #1 for port 8888] INFO? [org.apache.hadoop.ipc.Server] – Starting Socket Reader #1 for port 8888 2013-01-20 [...]将Hadoop RPC框架应用于多节点任务调度
声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
MySQLの場所:データベースとプログラミングMySQLの場所:データベースとプログラミングApr 13, 2025 am 12:18 AM

データベースとプログラミングにおけるMySQLの位置は非常に重要です。これは、さまざまなアプリケーションシナリオで広く使用されているオープンソースのリレーショナルデータベース管理システムです。 1)MySQLは、効率的なデータストレージ、組織、および検索機能を提供し、Web、モバイル、およびエンタープライズレベルのシステムをサポートします。 2)クライアントサーバーアーキテクチャを使用し、複数のストレージエンジンとインデックスの最適化をサポートします。 3)基本的な使用には、テーブルの作成とデータの挿入が含まれ、高度な使用法にはマルチテーブル結合と複雑なクエリが含まれます。 4)SQL構文エラーやパフォーマンスの問題などのよくある質問は、説明コマンドとスロークエリログを介してデバッグできます。 5)パフォーマンス最適化方法には、インデックスの合理的な使用、最適化されたクエリ、およびキャッシュの使用が含まれます。ベストプラクティスには、トランザクションと準備された星の使用が含まれます

MySQL:中小企業から大企業までMySQL:中小企業から大企業までApr 13, 2025 am 12:17 AM

MySQLは、中小企業に適しています。 1)中小企業は、顧客情報の保存など、基本的なデータ管理にMySQLを使用できます。 2)大企業はMySQLを使用して、大規模なデータと複雑なビジネスロジックを処理して、クエリのパフォーマンスとトランザクション処理を最適化できます。

Phantomの読み取りとは何ですか?Innodbはどのようにそれらを防ぐ(次のキーロック)?Phantomの読み取りとは何ですか?Innodbはどのようにそれらを防ぐ(次のキーロック)?Apr 13, 2025 am 12:16 AM

INNODBは、次のキーロックメカニズムを通じてファントムの読み取りを効果的に防止します。 1)Next-KeyLockingは、Row LockとGap Lockを組み合わせてレコードとギャップをロックして、新しいレコードが挿入されないようにします。 2)実際のアプリケーションでは、クエリを最適化して分離レベルを調整することにより、ロック競争を削減し、並行性パフォーマンスを改善できます。

mysql:プログラミング言語ではありませんが...mysql:プログラミング言語ではありませんが...Apr 13, 2025 am 12:03 AM

MySQLはプログラミング言語ではありませんが、そのクエリ言語SQLにはプログラミング言語の特性があります。1。SQLは条件付き判断、ループ、可変操作をサポートします。 2。ストアドプロシージャ、トリガー、機能を通じて、ユーザーはデータベースで複雑な論理操作を実行できます。

MySQL:世界で最も人気のあるデータベースの紹介MySQL:世界で最も人気のあるデータベースの紹介Apr 12, 2025 am 12:18 AM

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLの重要性:データストレージと管理MySQLの重要性:データストレージと管理Apr 12, 2025 am 12:18 AM

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

なぜMySQLを使用するのですか?利点と利点なぜMySQLを使用するのですか?利点と利点Apr 12, 2025 am 12:17 AM

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

InnoDBロックメカニズム(共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロック)を説明します。InnoDBロックメカニズム(共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロック)を説明します。Apr 12, 2025 am 12:16 AM

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境