By Lars Hofhansl Modern CPU cores can execute hundreds of instructions in the time it takes to reload the L1 cache. "RAM is the new disk" as a coworker at Salesforce likes to say. The L1-cache is the new RAM I might add. As we add more and
By Lars HofhanslModern CPU cores can execute hundreds of instructions in the time it takes to reload the L1 cache. "RAM is the new disk" as a coworker at Salesforce likes to say. The L1-cache is the new RAM I might add.
As we add more and more CPU cores, we can easily be memory IO bound unless we are a careful.
Many common problems I have seen over the years were related to:
-
concurrency problems
Aside from safety and liveliness considerations, a typical problem is too much synchronization limiting potential parallel execution. -
unneeded or unintended memory barriers
Memory barriers are required in Java by the following language constructs:- synchronized - sets read and write barriers as needed (details depend on JVM, version, and settings)
- volatile - sets a read barrier before a read to a volatile, and write barrier after a write
- final - set a write barrier after the assignment
- AtomicInteger, AtomicLong, etc - uses volatiles and hardware CAS instructions
-
unnecessary, unintended, or repeated memory copy or access
Memory copying is often seen in Java for example because of the lack of in-array pointers, or really just general unawareness and the expectation that "garbage collector will clean up the mess." Well, it does, but not without a price.
Like any software project of reasonable size, HBase has problems of all the above categories.
Profiling in Java has become extremely convenient. Just start jVisualVM which ships with the
Over the past few weeks I did some on and off profiling in HBase, which lead to the following issues:
HBASE-6603 - RegionMetricsStorage.incrNumericMetric is called too often
Ironically here it was the collection of a performance metric that caused a measurable slowdown of up 15%(!) for very wide rows (> 10k columns).The metric was maintained as an AtomicLong, which introduced a memory barrier in one of the hottest code paths in HBase.
The good folks at Facebook have found the same issue at roughly the same time. (It turns that they were also... uhm... the folks who introduced the problem.)
HBASE-6621 - Reduce calls to Bytes.toInt
A KeyValue (the data structure that represents "columns" in HBase) is currently backed by a single byte[]. The sizes of the various parts are encoded in this byte[] and have to read and decoded; each time an extra memory access. In many cases that can be avoided, leading to slight performance improvement.HBASE-6711 - Avoid local results copy in StoreScanner
All references pertaining to a single row (i.e. KeyValue with the same row key) were copied at the StoreScanner layer. Removing this lead to another slight performance increase with wide rows.HBASE-7180 - RegionScannerImpl.next() is inefficient
This introduces a mechanism for coprocessors to access RegionScanners at a lower level, thus allowing skipping of a lot of unnecessary setup for each next() call. In tight loops a coprocessor can make use of this new API to save another 10-15%.HBASE-7279 - Avoid copying the rowkey in RegionScanner, StoreScanner, and ScanQueryMatcher
The row key of KeyValue was copied in the various scan related classes. To reduce that effect the row key was previously cached in the KeyValue class - leading to extra memory required for each KeyValue.This change avoids all copying and hence also obviates the need for caching the row key.
A KeyValue now is hardly more than an array pointer (a byte[], an offset, and a length), and no data is copied any longer all the way from the block loaded from disk or cache to the RPC layer (unless the KeyValues are optionally encoded on disk, in which case they still need to be decoded in memory - we're working on improving that too).
Previously the size of a KeyValue on the scan path was at least 116 bytes + the length of the rowkey (which can be arbitrarily long). Now it is ~60 bytes, flat and including its own reference.
(remember during a course of a large scan we might be creating millions or even billions of KeyValue objects)
This is nice improvement both in term of scan performance (15-20% for small row keys of few bytes, much more for large ones) and in terms of produced garbage.
Since all copying is avoided, scanning now scales almost linearly with the number of cores.
HBASE-6852 - SchemaMetrics.updateOnCacheHit costs too much while full scanning a table with all of its fields
Other folks have been busy too. Here Cheng Hao found another problem with a scan related metric that caused a noticeable slowdown (even though I did not believe him first).This removed another set of unnecessary memory barriers.
HBASE-7336 - HFileBlock.readAtOffset does not work well with multiple threads
This is slightly different issue caused by bad synchronization of the FSReader associated with a Storefile. There is only a single reader per storefile. So if the file's blocks are not cached - possibly because the scan indicated that it wants no caching, because it expects to touch too many blocks - the scanner threads are now competing for read access to the store file. That lead to outright terrible performance, such a scanners timing out even with just two scanners accessing the same file in tight loop.This patch is a stop gap measure: Attempt to acquire the lock on the reader, if that failed switch to HDFS positional reads, which can read at an offset without affecting the state of the stream, and hence requires no locking.
Summary
Together these various changes can lead to ~40-50% scan performance improvement when using a single core. Even more when using multiple cores on the same machines (as is the case with HBase)An entirely unscientific benchmark
20m rows, with two column families just a few dozen bytes each.I performed two tests:
1. A scan that returns rows to the client
2. A scan that touches all rows via a filter but does not return anything to the client.
(This is useful to gauge the actual server side performance).
Further I tested with (1) no caching, all reads from disk (2) all data in the OS cache and (3) all data in HBase's block cache.
I compared 0.94.0 against the current 0.94 branch (what I will soon release as 0.94.4).
Results:
-
Scanning with scanner caching set to 10000:
-
0.94.0
no data in cache: 54s
data in OS cache: 51s
data in block cache: 35s
-
0.94.0
-
0.94.4-snapshot
no data in cache: 50s (IO bound between disk and network)
data in OS cache: 43s
data in block cache: 32s
(limiting factor was shipping the results to the client)
-
all data filtered at the server (with a SingleValueColumnFilter that does not match anything, so each rows is still scanned)
-
0.94.0
no data in cache: 31s
data in OS cache: 25s
data in block cache: 11s
-
0.94.0
-
0.94.4-snapshot
no data in cache: 22s
data in OS cache: 17s
cache in block cache: 6.3s
So as you can see scan performance has significantly improved since 0.94.0.
Salesforce just hired some performance engineers from a well known chip manufacturer, and I plan to get some of their time to analyze HBase in even more details, to track down memory stalls, etc.
原文地址:HBase Profiling, 感谢原作者分享。

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。

MySQLクエリのパフォーマンスが低いことの主な理由には、インデックスの使用、クエリオプティマイザーによる誤った実行計画の選択、不合理なテーブルデザイン、過剰なデータボリューム、ロック競争などがあります。 1.インデックスがゆっくりとクエリを引き起こし、インデックスを追加するとパフォーマンスが大幅に向上する可能性があります。 2。説明コマンドを使用してクエリ計画を分析し、オプティマイザーエラーを見つけます。 3.テーブル構造の再構築と結合条件を最適化すると、テーブルの設計上の問題が改善されます。 4.データボリュームが大きい場合、パーティション化とテーブル分割戦略が採用されます。 5.高い並行性環境では、トランザクションの最適化とロック戦略は、ロック競争を減らすことができます。

データベースの最適化では、クエリ要件に従ってインデックス作成戦略を選択する必要があります。1。クエリに複数の列が含まれ、条件の順序が固定されている場合、複合インデックスを使用します。 2。クエリに複数の列が含まれているが、条件の順序が修正されていない場合、複数の単一列インデックスを使用します。複合インデックスは、マルチコラムクエリの最適化に適していますが、単一列インデックスは単一列クエリに適しています。

MySQLスロークエリを最適化するには、slowquerylogとperformance_schemaを使用する必要があります。1。LowerQueryLogを有効にし、しきい値を設定して、スロークエリを記録します。 2。performance_schemaを使用してクエリの実行の詳細を分析し、パフォーマンスのボトルネックを見つけて最適化します。

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ドリームウィーバー CS6
ビジュアル Web 開発ツール

WebStorm Mac版
便利なJavaScript開発ツール
