Explain语法 EXPLAIN SELECT ……变体: 1 . EXPLAIN EXTENDED SELECT ……将执行计划“反编译”成SELECT语句,运行SHOW WARNINGS 可得到被MySQL优化器优化后的查询语句 2 . EXPLAIN PARTITIONS SELECT ……用于分区表的EXPLAIN 执行计划包含的信息 id 包含
Explain语法
EXPLAIN <span>SELECT</span><span> …… 变体: </span><span><strong>1</strong></span>. EXPLAIN EXTENDED <span>SELECT</span><span> …… 将执行计划“反编译”成SELECT语句,运行SHOW WARNINGS 可得到被MySQL优化器优化后的查询语句 </span><span><strong>2</strong></span>. EXPLAIN PARTITIONS <span>SELECT</span><span> …… 用于分区表的EXPLAIN</span>
执行计划包含的信息
id
包含一组数字,表示查询中执行select子句或操作表的顺序
id相同,执行顺序由上至下
如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行
id如果相同,可以认为是一组,从上往下顺序执行;在所有组中,id值越大,优先级越高,越先执行
select_type
表示查询中每个select子句的类型(简单 OR复杂)
a.SIMPLE:查询中不包含子查询或者UNION
b.查询中若包含任何复杂的子部分,最外层查询则被标记为:PRIMARY
c.在SELECT或WHERE列表中包含了子查询,该子查询被标记为:SUBQUERY
d.在FROM列表中包含的子查询被标记为:DERIVED(衍生)
e.若第二个SELECT出现在UNION之后,则被标记为UNION;若UNION包含在 FROM子句的子查询中,外层SELECT将被标记为:DERIVED
f.从UNION表获取结果的SELECT被标记为:UNION RESULT
type
表示MySQL在表中找到所需行的方式,又称“访问类型”,常见类型如下:
由左至右,由最差到最好
a.ALL:Full Table Scan, MySQL将遍历全表以找到匹配的行
b.index:Full Index Scan,index与ALL区别为index类型只遍历索引树
c.range:索引范围扫描,对索引的扫描开始于某一点,返回匹配值域的行,常见于between、等的查询
range访问类型的不同形式的索引访问性能差异
d.ref:非唯一性索引扫描,返回匹配某个单独值的所有行。常见于使用非唯一索引即唯一索引的非唯一前缀进行的查找
e.eq_ref:唯一性索引扫描,对于每个索引键,表中只有一条记录与之匹配。常见于主键或唯一索引扫描
f.const、system:当MySQL对查询某部分进行优化,并转换为一个常量时,使用这些类型访问。如将主键置于where列表中,MySQL就能将该查询转换为一个常量
system是const类型的特例,当查询的表只有一行的情况下, 使用system
g.NULL:MySQL在优化过程中分解语句,执行时甚至不用访问表或索引
possible_keys
指出MySQL能使用哪个索引在表中找到行,查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询使用
key
显示MySQL在查询中实际使用的索引,若没有使用索引,显示为NULL
TIPS:查询中若使用了覆盖索引,则该索引仅出现在key列表中
key_len
表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度
key_len显示的值为索引字段的最大可能长度,并非实际使用长度,即key_len是根据表定义计算而得,不是通过表内检索出的
ref
表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值
本例中,由key_len可知t1表的idx_col1_col2被充分使用,col1匹配t2表的col1,col2匹配了一个常量,即 ’ac’
rows
表示MySQL根据表统计信息及索引选用情况,估算的找到所需的记录所需要读取的行数
Extra
包含不适合在其他列中显示但十分重要的额外信息
a.Using index
该值表示相应的select操作中使用了覆盖索引(Covering Index)
TIPS:覆盖索引(Covering Index)
MySQL可以利用索引返回select列表中的字段,而不必根据索引再次读取数据文件
包含所有满足查询需要的数据的索引称为 覆盖索引(Covering Index)
注意:
如果要使用覆盖索引,一定要注意select列表中只取出需要的列,不可select *,因为如果将所有字段一起做索引会导致索引文件过大,查询性能下降
b.Using where
表示MySQL服务器在存储引擎受到记录后进行“后过滤”(Post-filter),
如果查询未能使用索引,Using where的作用只是提醒我们MySQL将用where子句来过滤结果集
c.Using temporary
表示MySQL需要使用临时表来存储结果集,常见于排序和分组查询
d.Using filesort
MySQL中无法利用索引完成的排序操作称为“文件排序”
MySQL执行计划的局限
?EXPLAIN不会告诉你关于触发器、存储过程的信息或用户自定义函数对查询的影响情况
?EXPLAIN不考虑各种Cache
?EXPLAIN不能显示MySQL在执行查询时所作的优化工作
?部分统计信息是估算的,并非精确值
?EXPALIN只能解释SELECT操作,其他操作要重写为SELECT后查看执行计划

ストアドプロシージャは、パフォーマンスを向上させ、複雑な操作を簡素化するためのMySQLのSQLステートメントを事前に拡大します。 1。パフォーマンスの改善:最初のコンピレーションの後、後続の呼び出しを再コンパイルする必要はありません。 2。セキュリティの改善:許可制御を通じてデータテーブルアクセスを制限します。 3.複雑な操作の簡素化:複数のSQLステートメントを組み合わせて、アプリケーションレイヤーロジックを簡素化します。

MySQLクエリキャッシュの実用的な原則は、選択クエリの結果を保存することであり、同じクエリが再度実行されると、キャッシュされた結果が直接返されます。 1)クエリキャッシュはデータベースの読み取りパフォーマンスを改善し、ハッシュ値を使用してキャッシュされた結果を見つけます。 2)単純な構成、mysql構成ファイルでquery_cache_typeとquery_cache_sizeを設定します。 3)SQL_NO_CACHEキーワードを使用して、特定のクエリのキャッシュを無効にします。 4)高周波更新環境では、クエリキャッシュがパフォーマンスボトルネックを引き起こし、パラメーターの監視と調整を通じて使用するために最適化する必要がある場合があります。

MySQLがさまざまなプロジェクトで広く使用されている理由には、次のものがあります。1。複数のストレージエンジンをサポートする高性能とスケーラビリティ。 2。使いやすく、メンテナンス、シンプルな構成とリッチツール。 3。豊富なエコシステム、多数のコミュニティとサードパーティのツールサポートを魅了します。 4。複数のオペレーティングシステムに適したクロスプラットフォームサポート。

MySQLデータベースをアップグレードする手順には次のものがあります。1。データベースをバックアップします。2。現在のMySQLサービスを停止します。3。MySQLの新しいバージョンをインストールします。アップグレードプロセス中に互換性の問題が必要であり、Perconatoolkitなどの高度なツールをテストと最適化に使用できます。

MySQLバックアップポリシーには、論理バックアップ、物理バックアップ、増分バックアップ、レプリケーションベースのバックアップ、クラウドバックアップが含まれます。 1. Logical BackupはMySqldumpを使用してデータベースの構造とデータをエクスポートします。これは、小さなデータベースとバージョンの移行に適しています。 2.物理バックアップは、データファイルをコピーすることで高速かつ包括的ですが、データベースの一貫性が必要です。 3.インクリメンタルバックアップは、バイナリロギングを使用して変更を記録します。これは、大規模なデータベースに適しています。 4.レプリケーションベースのバックアップは、サーバーからバックアップすることにより、生産システムへの影響を減らします。 5. Amazonrdsなどのクラウドバックアップは自動化ソリューションを提供しますが、コストと制御を考慮する必要があります。ポリシーを選択するときは、データベースサイズ、ダウンタイム許容度、回復時間、および回復ポイントの目標を考慮する必要があります。

mysqlclusteringenhancesdatabaserobustnessnessnessnessnessnistandistributiondistributingdataacrossmultiplenodes.itesthendbenginefordatareplication andfaulttolerance、保証highavailability.setupinvolvesconfiguringmanagement、data、ssqlnodes、carefulmonitoringringandpe

MySQLのデータベーススキーマ設計の最適化は、次の手順を通じてパフォーマンスを改善できます。1。インデックス最適化:一般的なクエリ列にインデックスを作成し、クエリのオーバーヘッドのバランスをとり、更新を挿入します。 2。テーブル構造の最適化:正規化または反通常化によりデータ冗長性を削減し、アクセス効率を改善します。 3。データ型の選択:Varcharの代わりにINTなどの適切なデータ型を使用して、ストレージスペースを削減します。 4。パーティション化とサブテーブル:大量のデータボリュームの場合、パーティション化とサブテーブルを使用してデータを分散させてクエリとメンテナンスの効率を改善します。

tooptimizemysqlperformance、soflowthesesteps:1)properindexingtospeedupqueries、2)useexplaintoanalyzeandoptimize Queryperformance、3)AductServerContingSettingStingsinginginnodb_buffer_pool_sizeandmax_connections、4)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ホットトピック









