検索

Mongodb基础入门(3)排序和索引

Jun 07, 2016 pm 04:13 PM
mongodbはじめるベース選別索引

今天继续Mongodb,简单的记录下其排序和索引的使用。 在Mongodb中使用sort()方法对数据进行排序。 命令格式:db.collectionName.find().sort({key:参数}) 参数说明: -1:表示降序 1:表示升序(默认) doc集合中数据如下: db.doc.find({},{_id:0,goods_id:1

今天继续Mongodb,简单的记录下其排序和索引的使用。

在Mongodb中使用sort()方法对数据进行排序。

命令格式:db.collectionName.find().sort({key:参数})

参数说明:

-1:表示降序

1:表示升序(默认)

doc集合中数据如下:

> db.doc.find({},{_id:0,goods_id:1})

{ "goods_id" : 1 }

{ "goods_id" : 4 }

{ "goods_id" : 3 }

{ "goods_id" : 5 }

{ "goods_id" : 6 }

{ "goods_id" : 7 }

{ "goods_id" : 8 }

{ "goods_id" : 9 }

{ "goods_id" : 10 }

{ "goods_id" : 11 }

{ "goods_id" : 12 }

> db.doc.find({},{_id:0,goods_id:1}).sort({goods_id:1})

\

 

索引

1、 简介

和mysql数据类似,为了提高查询效率,Mongodb也提供索引的支持。在Mongodb中,索引可以按照字段进行升序/降序来创建,以便于排序。当然,Mongodb默认采用B-tree方式来索引。

按索引作用类型可分为:

1、 单列索引:在单个键上创建索引。

2、 组合索引:在多个键上同时创建索引,也叫多列索引。

3、 文档索引:任何类型,包括文档(document)都可以作为索引。

索引的性质可以分:

1、 普通索引:普通方式创建的索引。注意:Mongodb存在默认的_id的键,相当于主键。集合在创建之后,系统会自动在_id创建索引,该索引为系统默认,无法删除。

2、 唯一索引:某列为唯一索引时,不能添加重复文档。注意,如果文档不存在指定字段时,会将该字段默认为null,而null也会被认为重复。

3、 稀疏索引:和稀疏矩阵类似,稀疏索引就是将含有某个字段的文档进行索引,不包含该字段的文档则进行索引。一般在小部分文档含有某列时常用。

4、 哈希索引:2.4版本新增的索引方式。相比于普通索引,其速度更快。但是无法对范围查询进行优化。多用于随机性比较强的散列当中。

2、 查看索引

db.collectionName.getIndexes()

3、 创建索引

A、 创建普通单列索引:默认是升序索引,采用B-tree方式

db.collectionName.ensureIndex({field:1/-1})//1:升序;-1:降序

B、 创建多列索引:

db.collectionName.ensureIndex({field1:1/-1,field2:1/-1})

C、 创建文档索引:

A)创建普通文档索引

db.collectionName.ensureIndex({filed:1/-1})

> db.users.insert({name:"god",info:{city:"NewYork",state:"happy"}})

WriteResult({"nInserted" : 1 })

>db.users.ensureIndex({info:1})//将整个info文档作为索引

{

"createdCollectionAutomatically" : false,

"numIndexesBefore" : 1,

"numIndexesAfter" : 2,

"ok" : 1

}

>db.users.getIndexes()

[

{

"v" : 1,

"key" : {

"_id" : 1

},

"name" : "_id_",

"ns" : "test.users"

},

{

"v" : 1,

"key" : {

"info" : 1

},

"name" : "info_1",

"ns" : "test.users"

}

]

注意:在使用索引查询的时候需要按照事先文档字段的顺序。

> db.users.find({info:{city:"NewYork",state:"happy"}})//能够利用索引查到结果

{ "_id" :ObjectId("54a79a1bc289fc3b6fcc719a"), "name" :"god", "info" : { "city

" : "NewYork", "state" : "happy" } }

 

>db.users.find({info:{$gte:{city:"New York"}}})//能够利用索引查到结果

{ "_id" :ObjectId("54a79a1bc289fc3b6fcc719a"), "name" :"god", "info" : { "city

" : "NewYork", "state" : "happy" } }

 

>db.users.find({info:{state:"happy",city:"New York"}})//不能利用索引查到结果

 

B)创建子文档索引

db.collectionName.ensureIndex({filed.subfield:1/-1})

> db.users.ensureIndex({"info.city":1})

{

"createdCollectionAutomatically" : false,

"numIndexesBefore" : 1,

"numIndexesAfter" : 2,

"ok" : 1

}

>db.users.getIndexes()

[

{

"v" : 1,

"key" : {

"_id" : 1

},

"name" : "_id_",

"ns" : "test.users"

},

{

"v" : 1,

"key" : {

"info.city" : 1

},

"name" : "info.city_1",

"ns" : "test.users"

}

]

 

D、创建唯一索引:可以针对多列创建唯一索引

db.collectinName.ensureIndex({filed.subfield:1/-1},{unique:true})

E、创建稀疏索引:

db.collectionName.ensureIndex({filed:1/-1},{sparse:true})

F、 创建哈希索引:可以对单个字段或字文档建立hash索引,不能针对多个列。

db.collectionName.ensureIndex({field:”hash”})

 

4、 删除索引

A、删除单个索引:

db.collectionName.dropIndex({filed:1/-1})

B、删除所有索引:_id列的索引不会删除。

db.collectionName.dropIndexes()

注意:在关系数据库中,表被删除后,索引随之删除。

而在Monodb中删除集合,索引仍然存在,因此需要手动删除索引。

 

5、 重建索引

一个集合在经过多次修改之后,将会导致集合的文件产生碎片。同样索引文件也会如此。因此可以通过索引的重建来减少索引文件碎片,提高索引效率。和mysql中的optimize table类似。命令:db.collectionName.reIndex().

 

索引的管理

1、查询所有索引:

system.indexes集合中包含了每个索引的详细信息,因此可以通过该命令:

db.system.indexes.find()查询已经存在的索引.

{"v" : 1, "key" : { "_id" : 1 }, "name": "_id_", "ns" : "test.doc" }

{"v" : 1, "key" : { "_id" : 1 }, "name": "_id_", "ns" : "test.category" }

{"v" : 1, "key" : { "_id" : 1 }, "name": "_id_", "ns" : "test.tea" }

{"v" : 1, "key" : { "email" : 1 },"name" : "sparse:1", "ns" : "test.tea"}

{"v" : 1, "key" : { "_id" : 1 }, "name": "_id_", "ns" : "test.users" }

{"v" : 1, "key" : { "info.city" : 1 },"name" : "info.city_1", "ns" :"test.users" }

 

2、查看查询计划:

为了分析查询性能及索引,一边获得更多查询方面有用的信息,可以使用如下命令:

db.collectionName.find(查询表达式).explain()

\

"cursor" :"BasicCursor" ——>表示索引没有发挥作用

"nscanned":1 ——>表示查询了多少个文档。
"n",:1 ——>表示返回的文档数量。
"millis":0 ——>表示整个查询的耗时。

"nscannedObjects" : 11, ——>理论上需要扫描多少行

 

3、后台创建索引

为已有数据的文档创建索引时,为了不阻塞其他操作,同时可以在后台创建索引,可以使用命令:db.test.ensureIndex({filed:1/-1},{"background":true})

相比阻塞创建索引而言,后台创建索引效率较低。

 

 

注意

1、如果数据集合比较小(一般来说是4m一下),此时如果使用sort()进行排序就不需要使用索引。

2、在使用组合索引查询时,查询字段的顺序必须和事先创建索引时的顺序保持一致。否则会出现上文提到的出现查不到的情况。

 

 

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
MySQL:世界で最も人気のあるデータベースの紹介MySQL:世界で最も人気のあるデータベースの紹介Apr 12, 2025 am 12:18 AM

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLの重要性:データストレージと管理MySQLの重要性:データストレージと管理Apr 12, 2025 am 12:18 AM

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

なぜMySQLを使用するのですか?利点と利点なぜMySQLを使用するのですか?利点と利点Apr 12, 2025 am 12:17 AM

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

InnoDBロックメカニズム(共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロック)を説明します。InnoDBロックメカニズム(共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロック)を説明します。Apr 12, 2025 am 12:16 AM

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。

貧弱なMySQLクエリパフォーマンスの一般的な原因は何ですか?貧弱なMySQLクエリパフォーマンスの一般的な原因は何ですか?Apr 12, 2025 am 12:11 AM

MySQLクエリのパフォーマンスが低いことの主な理由には、インデックスの使用、クエリオプティマイザーによる誤った実行計画の選択、不合理なテーブルデザイン、過剰なデータボリューム、ロック競争などがあります。 1.インデックスがゆっくりとクエリを引き起こし、インデックスを追加するとパフォーマンスが大幅に向上する可能性があります。 2。説明コマンドを使用してクエリ計画を分析し、オプティマイザーエラーを見つけます。 3.テーブル構造の再構築と結合条件を最適化すると、テーブルの設計上の問題が改善されます。 4.データボリュームが大きい場合、パーティション化とテーブル分割戦略が採用されます。 5.高い並行性環境では、トランザクションの最適化とロック戦略は、ロック競争を減らすことができます。

複数の単一列インデックスに対して複合インデックスをいつ使用する必要がありますか?複数の単一列インデックスに対して複合インデックスをいつ使用する必要がありますか?Apr 11, 2025 am 12:06 AM

データベースの最適化では、クエリ要件に従ってインデックス作成戦略を選択する必要があります。1。クエリに複数の列が含まれ、条件の順序が固定されている場合、複合インデックスを使用します。 2。クエリに複数の列が含まれているが、条件の順序が修正されていない場合、複数の単一列インデックスを使用します。複合インデックスは、マルチコラムクエリの最適化に適していますが、単一列インデックスは単一列クエリに適しています。

MySQLでスロークエリを識別して最適化する方法は? (スロークエリログ、Performance_schema)MySQLでスロークエリを識別して最適化する方法は? (スロークエリログ、Performance_schema)Apr 10, 2025 am 09:36 AM

MySQLスロークエリを最適化するには、slowquerylogとperformance_schemaを使用する必要があります。1。LowerQueryLogを有効にし、しきい値を設定して、スロークエリを記録します。 2。performance_schemaを使用してクエリの実行の詳細を分析し、パフォーマンスのボトルネックを見つけて最適化します。

MySQLおよびSQL:開発者にとって不可欠なスキルMySQLおよびSQL:開発者にとって不可欠なスキルApr 10, 2025 am 09:30 AM

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。