検索
ホームページデータベースmysql チュートリアルHermes与开源的Solr、ElasticSearch的不同

Hermes与开源的Solr、ElasticSearch的不同

Jun 07, 2016 pm 04:12 PM
elasticsearchsolrいいえオープンソース

Hermes与开源的Solr、ElasticSearch的不同 谈到Hermes的索引技术,相信很多同学都会想到Solr、ElasticSearch。Solr、ElasticSearch在真可谓是大名鼎鼎,是两个顶级项目,最近有些同学经常问我,开源世界有Solr、ElasticSearch为什么还要使用Hermes? 在回答这

Hermes与开源的Solr、ElasticSearch的不同

谈到Hermes的索引技术,相信很多同学都会想到Solr、ElasticSearch。Solr、ElasticSearch在真可谓是大名鼎鼎,是两个顶级项目,最近有些同学经常问我,“开源世界有Solr、ElasticSearch为什么还要使用Hermes?”

在回答这个问题之前,大家可以思考一个问题,既然已经有了Oracle、MySQL等数据库为什么大家还要使用Hadoo[下的Hive、Spark? Oracle和MySQL也有集群版,也可以分布式,那Hadoop与Hive的出现是不是多余的?

Hermes的出现,并不是为了替代Solr、ES的,就像Hadoop的出现并不是为了干掉Oracle和MySQL一样。而是为了满足不同层面的需求。

一、Hermes与Solr,ES定位不同

Solr\ES :偏重于为小规模的数据提供全文检索服务;Hermes:则更倾向于为大规模的数据仓库提供索引支持,为大规模数据仓库提供即席分析的解决方案,并降低数据仓库的成本,Hermes数据量更“大”。

Solr、ES的使用特点如下:

1. 源自搜索引擎,侧重搜索与全文检索。

2. 数据规模从几百万到千万不等,数据量过亿的集群特别少。

Ps:有可能存在个别系统数据量过亿,但这并不是普遍现象(就像Oracle的表里的数据规模有可能超过Hive里一样,但需要小型机)。

Hermes:的使用特点如下:

1. 一个基于大索引技术的海量数据实时检索分析平台。侧重数据分析。

2. 数据规模从几亿到万亿不等。最小的表也是千万级别。

在 腾讯17 台TS5机器,就可以处理每天450亿的数据(每条数据1kb左右),数据可以保存一个月之久。

二、Hermes与Solr,ES在技术实现上也会有一些区别

Solr、ES在大索引上存在的问题:

1. 一级跳跃表是完全Load在内存中的。

这种方式需要消耗很多内存不说,首次打开索引的加载速度会特别慢.

在Solr\ES中的索引是一直处于打开状态的,不会频繁的打开与关闭;

这种模式会制约一台机器的索引数量与索引规模,通常一台机器固定负责某个业务的索引。

2. 为了排序,将列的全部值Load到放到内存里。

排序和统计(sum,max,min)的时候,是通过遍历倒排表,将某一列的全部值都Load到内存里,然后基于内存数据进行统计,即使一次查询只会用到其中的一条记录,也会将整列的全部值都Load到内存里,太浪费资源,首次查询的性能太差。

数据规模受物理内存限制很大,索引规模上千万后OOM是常事。

3. 索引存储在本地硬盘,恢复难

一旦机器损坏,数据即使没有丢失,一个几T的索引,仅仅数据copy时间就需要好几个小时才能搞定。

4. 集群规模太小

支持Master/Slave模式,但是跟传统MySQL数据库一样,集群规模并没有特别大的(百台以内)。这种模式处理集群规模受限外,每次扩容的数据迁移将是一件非常痛苦的事情,数据迁移时间太久。

5. 数据倾斜问题

倒排检索即使某个词语存在数据倾斜,因数据量比较小,也可以将全部的doc list都读取过来(比如说男、女),这个doc list会占用较大的内存进行Cache,当然在数据规模较小的情况下占用内存不是特别多,查询命中率很高,会提升检索速度,但是数据规模上来后,这里的内存问题越来越严重。

6. 节点和数据规模受限

Merger Server只能是一个,制约了查询的节点数量;数据不能进行动态分区,数据规模上来后单个索引太大。

7. 高并发导入的情况下, GC占用CPU太高,多线程并发性能上不去。

AttributeSource使用了WeakHashMap来管理类的实例化,并使用了全局锁,无论加了多大的线程,导入性能上不去。

AttributeSource与NumbericField,使用了大量的LinkHashMap以及很多无用的对象,导致每一条记录都要在内存中创建很多无用的对象,造成了JVM要频繁的回收这些对象,CPU消耗过高。

FieldCacheImpl使用的WeakHashMap有BUG,大数据的情况下有OOM的风险。

单机导入性能在笔者的环境下(1kb的记录每台机器想突破2w/s 很难)

Solr与ES小结

并不是说Solr与ES的这种方式不好,在数据规模较小的情况下,Solr的这种处理方式表现优越,并发性能较好,Cache利用率较高,事实证明在生产领域Solr和ES是非常稳定的,并且性能也很卓越;但是在数据规模较大,并且数据在频繁的实时导入的情况下,就需要进行一些优化。

Hermes在索引上的改进:

1. 索引按需加载

大部分的索引处于关闭状态,只有真正用到索引才会去打开;一级跳跃表采用按需Load,并不会Load整个跳跃表,用来节省内存和提高打开索引的速度。Hermes经常会根据业务的不同动态的打开不同的索引,关闭那些不经常使用的索引,这样同样一台机器,可以被多种不同的业务所使用,机器利用率高。

2. 排序和统计按需加载

排序和统计并不会使用数据的真实值,而是通过标签技术将大数据转换成占用内存很小的数据标签,占用内存是原先的几十分之一。

另外不会将这个列的全部值都Load到内存里,而是用到哪些数据Load哪些数据,依然是按需Load。不用了的数据会从内存里移除。

3. 索引存储在HDFS中

理论上只要HDFS有空间,就可以不断的添加索引,索引规模不在严重受机器的物理内存和物理磁盘的限制。容灾和数据迁移容易得多。

4. 采用Gaia进行进程管理(腾讯版的Yarn)

数据在HDFS中,集群规模和扩容都是一件很容易的事情,Gaia在腾讯集群规模已达万台)。

5. 采用多条件组合跳跃降低数据倾斜

如果某个词语存在数据倾斜,则会与其他条件组合进行跳跃合并(参考doclist的skip list资料)。

6. 多级Merger与自定义分区

7. GC上进行了一些优化

自己进行内存管理,关键地方的内存对象的创建和释放java内部自己控制,减少GC的压力(类似Hbase的Block Buffer Cache)。

不使用WeakHashMap和全局锁,WeakHashMap使用不当容易内存泄露,而且性能太差。

用于分词的相关对象是共用的,减少反复的创建对象和释放对象。

1kb大小的数据,在笔者的环境下,一台机器每秒能处理4~8W条记录.

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
MySQLのデータベースアップグレードをどのように処理しますか?MySQLのデータベースアップグレードをどのように処理しますか?Apr 30, 2025 am 12:28 AM

MySQLデータベースをアップグレードする手順には次のものがあります。1。データベースをバックアップします。2。現在のMySQLサービスを停止します。3。MySQLの新しいバージョンをインストールします。アップグレードプロセス中に互換性の問題が必要であり、Perconatoolkitなどの高度なツールをテストと最適化に使用できます。

MySQLに使用できるさまざまなバックアップ戦略は何ですか?MySQLに使用できるさまざまなバックアップ戦略は何ですか?Apr 30, 2025 am 12:28 AM

MySQLバックアップポリシーには、論理バックアップ、物理バックアップ、増分バックアップ、レプリケーションベースのバックアップ、クラウドバックアップが含まれます。 1. Logical BackupはMySqldumpを使用してデータベースの構造とデータをエクスポートします。これは、小さなデータベースとバージョンの移行に適しています。 2.物理バックアップは、データファイルをコピーすることで高速かつ包括的ですが、データベースの一貫性が必要です。 3.インクリメンタルバックアップは、バイナリロギングを使用して変更を記録します。これは、大規模なデータベースに適しています。 4.レプリケーションベースのバックアップは、サーバーからバックアップすることにより、生産システムへの影響を減らします。 5. Amazonrdsなどのクラウドバックアップは自動化ソリューションを提供しますが、コストと制御を考慮する必要があります。ポリシーを選択するときは、データベースサイズ、ダウンタイム許容度、回復時間、および回復ポイントの目標を考慮する必要があります。

MySQLクラスタリングとは何ですか?MySQLクラスタリングとは何ですか?Apr 30, 2025 am 12:28 AM

mysqlclusteringenhancesdatabaserobustnessnessnessnessnessnistandistributiondistributingdataacrossmultiplenodes.itesthendbenginefordatareplication andfaulttolerance、保証highavailability.setupinvolvesconfiguringmanagement、data、ssqlnodes、carefulmonitoringringandpe

MySQLのパフォーマンスのためにデータベーススキーマ設計を最適化するにはどうすればよいですか?MySQLのパフォーマンスのためにデータベーススキーマ設計を最適化するにはどうすればよいですか?Apr 30, 2025 am 12:27 AM

MySQLのデータベーススキーマ設計の最適化は、次の手順を通じてパフォーマンスを改善できます。1。インデックス最適化:一般的なクエリ列にインデックスを作成し、クエリのオーバーヘッドのバランスをとり、更新を挿入します。 2。テーブル構造の最適化:正規化または反通常化によりデータ冗長性を削減し、アクセス効率を改善します。 3。データ型の選択:Varcharの代わりにINTなどの適切なデータ型を使用して、ストレージスペースを削減します。 4。パーティション化とサブテーブル:大量のデータボリュームの場合、パーティション化とサブテーブルを使用してデータを分散させてクエリとメンテナンスの効率を改善します。

MySQLのパフォーマンスをどのように最適化できますか?MySQLのパフォーマンスをどのように最適化できますか?Apr 30, 2025 am 12:26 AM

tooptimizemysqlperformance、soflowthesesteps:1)properindexingtospeedupqueries、2)useexplaintoanalyzeandoptimize Queryperformance、3)AductServerContingSettingStingsinginginnodb_buffer_pool_sizeandmax_connections、4)

データ処理と計算にMySQL関数を使用する方法データ処理と計算にMySQL関数を使用する方法Apr 29, 2025 pm 04:21 PM

MySQL関数は、データ処理と計算に使用できます。 1.基本的な使用には、文字列処理、日付計算、数学操作が含まれます。 2。高度な使用法には、複数の関数を組み合わせて複雑な操作を実装することが含まれます。 3.パフォーマンスの最適化では、Where句での機能の使用を回避し、GroupByおよび一時テーブルを使用する必要があります。

MySQLにデータを挿入する効率的な方法MySQLにデータを挿入する効率的な方法Apr 29, 2025 pm 04:18 PM

MySQLでデータを挿入するための効率的な方法には、次のものが含まれます。1。insertInto ...値構文、2。LoadDatainFileコマンドの使用、3。トランザクション処理の使用、4。バッチサイズの調整、5。Insurtignoreまたは挿入の使用...

フィールドをMySQLテーブルに追加および削除する手順フィールドをMySQLテーブルに追加および削除する手順Apr 29, 2025 pm 04:15 PM

MySQLでは、AlterTabletable_nameaddcolumnnew_columnvarchar(255)afterexisting_columnを使用してフィールドを追加し、andtabletable_namedopcolumncolumn_to_dropを使用してフィールドを削除します。フィールドを追加するときは、クエリのパフォーマンスとデータ構造を最適化する場所を指定する必要があります。フィールドを削除する前に、操作が不可逆的であることを確認する必要があります。オンラインDDL、バックアップデータ、テスト環境、および低負荷期間を使用したテーブル構造の変更は、パフォーマンスの最適化とベストプラクティスです。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。