vcNa41eu2vNa4z/LVu7XNo6y1sdG51bu1xMqxuvKjrHRvcNa41evP8snP0sa2r6Os1rG1"/> vcNa41eu2vNa4z/LVu7XNo6y1sdG51bu1xMqxuvKjrHRvcNa41evP8snP0sa2r6Os1rG1">
検索

数据结构栈

Jun 07, 2016 pm 04:10 PM
一度勉強データ構造ノート記録言語説明する

说明:严蔚敏的《数据结构》(C语言版)学习笔记,记录一下,以备后面查看。 如上图所示,刚开始base指针和tZ喎?http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vcNa41eu2vNa4z/LVu7XNo6y1sdG51bu1xMqxuvKjrHRvcNa41evP8snP0sa2r6Os1rG1

说明:严蔚敏的《数据结构》(C语言版)学习笔记,记录一下,以备后面查看。

\

如上图所示,刚开始base指针和tZ喎?http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vcNa41eu2vNa4z/LVu7XNo6y1sdG51bu1xMqxuvKjrHRvcNa41evP8snP0sa2r6Os1rG1vdW7wvq686Os1bu2pda41et0b3DWuM/y1bvN4rXY1rejrLTLyrHO0sPH0OjSqtTZt9bF5NDCv9W85KGjPC9wPjxwPjwvcD48cHJlIGNsYXNzPQ=="brush:sql;">#include #include #include #define STACK_INIT_SIZE 100 //存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 const int OK = 1; //定义正确返回 const int ERROR = -1; //定义错误的返回 const int OVERFLOW = -2; //定义溢出 //定义元素类型 typedef int SElemType; //定义返回类型 typedef int Status; typedef struct{ SElemType *base; //栈底指针,在构造之前和销毁后base的值为NULL SElemType *top; //栈顶指针 int stacksize; //已分配的空间 }SqStack; //初始化栈 Status InitStack(SqStack &S){ S.base = (SElemType *)malloc(STACK_INIT_SIZE * sizeof(SElemType)); if(!S.base) exit(OVERFLOW); S.top = S.base; S.stacksize = STACK_INIT_SIZE; return OK; } //获取栈顶元素 Status GetTop(SqStack S, SElemType &e){ if(S.top == S.base) return ERROR; e = *(S.top - 1); return OK; } //压栈 Status Push(SqStack &S, SElemType e){ if(S.top - S.base >= S.stacksize){ S.base = (SElemType *)realloc(S.base, (S.stacksize + STACKINCREMENT) * sizeof(SElemType)); if(!S.base) exit(OVERFLOW); S.top = S.base + S.stacksize; S.stacksize += STACKINCREMENT; } *S.top = e; S.top++; return OK; } //出栈 Status Pop(SqStack &S, SElemType &e){ if(S.top == S.base) return ERROR; e = *(--S.top); return OK; } //判断栈是否为空 bool StackEmpty(const SqStack &S){ if(S.top == S.base) return true; else return false; } //十进制数转8进制数 void conversion(SqStack &S){ InitStack(S); printf("请输入10进制数,返回一个8进制数:\n"); int n; scanf("%d", &n); while(n){ Push(S, n % 8); n = n / 8; } SElemType e; printf("8进制数是:0x"); while(!StackEmpty(S)){ Pop(S, e); printf("%d", e); } printf("\n"); } int main(){ SqStack sq; //InitStack(sq); //Push(sq, 1); //Push(sq, 2); //Push(sq, 3); //SElemType e3; //Pop(sq, e3); //GetTop(sq, e3); //printf("%d", e3); conversion(sq); scanf("%d"); return 0; }

上面的conversion函数是一个将10进制转换为8进制的例子,这个就是栈的一个应用,还有例如,括号匹配的验证、迷宫求解等。

例如Hanoi塔问题:

假设有3个分别为a,b,c的三个塔座,a上有直径从大到小的圆盘,可以借助b塔座将a上的圆盘移动到c上,移动过程中大小顺序不变。

\

void movePic(char a, int n, char b){
    printf("将编号为%d的圆盘从%c上移动到%c上\n", n , a, b);
}

void hanuota(int n, char x, char y, char z){
    if(n == 1){
        movePic(x, 1, z);  //将编号为1的圆盘从x移到z
    }else{
        hanuota(n - 1, x, z, y); //将x上编号为1到n-1的圆盘移到y,z作辅助塔
        movePic(x, n, z);  //将编号为n的圆盘从x移到z
        hanuota(n - 1, y, x, z); //将y上编号为1到n-1的圆盘移到z,x作辅助塔
    }
}

int main(){
    hanuota(3, 'a', 'b', 'c');
}
我们可以将问题简单抽象成递归。

1、要将n个圆盘移动到c,则需要先将n-1个圆盘移动到b

\

2、再将a上的最底下的圆盘移动到c

\

3、最后将b上面的n-1个圆盘移动到c

经过这三个步骤就可以完成移动,在这三个步骤中,步骤1,从a将n-1个圆盘移动到b和问题本身是同一个问题,步骤3将n-1个圆盘从b移动到c也和问题本身是同一个问题,所以这两处我们就可以迭代调用。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
MySQL:世界で最も人気のあるデータベースの紹介MySQL:世界で最も人気のあるデータベースの紹介Apr 12, 2025 am 12:18 AM

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLの重要性:データストレージと管理MySQLの重要性:データストレージと管理Apr 12, 2025 am 12:18 AM

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

なぜMySQLを使用するのですか?利点と利点なぜMySQLを使用するのですか?利点と利点Apr 12, 2025 am 12:17 AM

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

InnoDBロックメカニズム(共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロック)を説明します。InnoDBロックメカニズム(共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロック)を説明します。Apr 12, 2025 am 12:16 AM

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。

貧弱なMySQLクエリパフォーマンスの一般的な原因は何ですか?貧弱なMySQLクエリパフォーマンスの一般的な原因は何ですか?Apr 12, 2025 am 12:11 AM

MySQLクエリのパフォーマンスが低いことの主な理由には、インデックスの使用、クエリオプティマイザーによる誤った実行計画の選択、不合理なテーブルデザイン、過剰なデータボリューム、ロック競争などがあります。 1.インデックスがゆっくりとクエリを引き起こし、インデックスを追加するとパフォーマンスが大幅に向上する可能性があります。 2。説明コマンドを使用してクエリ計画を分析し、オプティマイザーエラーを見つけます。 3.テーブル構造の再構築と結合条件を最適化すると、テーブルの設計上の問題が改善されます。 4.データボリュームが大きい場合、パーティション化とテーブル分割戦略が採用されます。 5.高い並行性環境では、トランザクションの最適化とロック戦略は、ロック競争を減らすことができます。

複数の単一列インデックスに対して複合インデックスをいつ使用する必要がありますか?複数の単一列インデックスに対して複合インデックスをいつ使用する必要がありますか?Apr 11, 2025 am 12:06 AM

データベースの最適化では、クエリ要件に従ってインデックス作成戦略を選択する必要があります。1。クエリに複数の列が含まれ、条件の順序が固定されている場合、複合インデックスを使用します。 2。クエリに複数の列が含まれているが、条件の順序が修正されていない場合、複数の単一列インデックスを使用します。複合インデックスは、マルチコラムクエリの最適化に適していますが、単一列インデックスは単一列クエリに適しています。

MySQLでスロークエリを識別して最適化する方法は? (スロークエリログ、Performance_schema)MySQLでスロークエリを識別して最適化する方法は? (スロークエリログ、Performance_schema)Apr 10, 2025 am 09:36 AM

MySQLスロークエリを最適化するには、slowquerylogとperformance_schemaを使用する必要があります。1。LowerQueryLogを有効にし、しきい値を設定して、スロークエリを記録します。 2。performance_schemaを使用してクエリの実行の詳細を分析し、パフォーマンスのボトルネックを見つけて最適化します。

MySQLおよびSQL:開発者にとって不可欠なスキルMySQLおよびSQL:開発者にとって不可欠なスキルApr 10, 2025 am 09:30 AM

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境