数据库数据在Java占用内存简单估算 结论: 1.数据库记录放在JAVA里,用对象(ORM一般的处理方式)需要4倍左右的内存空间,用HashMap这种KV保存需要10倍空间; 2.如果你主要数据是text大文本,那空间一般可以按2倍估算。 以上是一个通用数据测试结论,估大家参考
数据库数据在Java占用内存简单估算
结论:
1.数据库记录放在JAVA里,用对象(ORM一般的处理方式)需要4倍左右的内存空间,用HashMap这种KV保存需要10倍空间;
2.如果你主要数据是text大文本,那空间一般可以按2倍估算。
以上是一个通用数据测试结论,估大家参考。
数据库记录占用的空间大小比较好算,比如一个int占用4字节,bigint占用8字节,date占用3字节,datetime占用8字节,varchar是变长字节等。如果不想精确计算,在数据库中通过统计信息也可以比较轻松的知道表总共占用的空间及每条记录平均行长。
当我们用JDBC访问数据库时,经常会被问到内存溢出的问题,由于java是面向对象的语言,用JVM来自动内存回收,不能按普通方法计算内存,本文给出一个估算内存的思路和参考答案
先给出普通JDBC中数据库对象与内存的映射关系
MySQL |
Oracle |
JDBC |
Int |
Integer |
|
Int unsigned |
Long |
|
BigInt |
Long |
|
BigInt unsigned |
BigInteger |
|
Decimal |
Number |
BigDecimal |
Varchar |
Varchar2 |
String |
Date |
Date |
|
Datetime |
Date |
Timestamp |
Timestamp |
Timestamp |
Timestamp |
Clob |
Clob |
String |
Blob |
blob |
Byte[] |
Text |
Clob |
String |
float |
binary_float |
float |
double |
binary_double |
double |
上面这个比较好理解,接下来我们需要JAVA常用对象的内存占用空间,这个可以通过JDK 5 开始提供的Instrumentation 接口来完成,也可以通过开源的sizeOf.jar 来测试,笔者是通过sizeOf.jar验证的。测试结果数据如下:
对象 |
64位 JVM 压缩指针 |
64位 JVM 非压缩指针 |
Integer |
16 |
24 |
Long |
24 |
24 |
Object |
16 |
16 |
Date |
24 |
32 |
Timestamp |
32 |
40 |
String_0 |
48 |
64 |
String_1 |
56 |
72 |
String_10 |
72 |
88 |
String_100 |
248 |
264 |
StringBuilder |
24 |
32 |
BigDecimal |
40 |
48 |
BigInteger |
64 |
80 |
HashMap |
128 |
216 |
HashMap_0 |
72 |
96 |
HashMap_100 |
576 |
1112 |
HashMap_10000 |
65600 |
131160 |
ArrayList |
80 |
144 |
ArrayList_0 |
40 |
64 |
ArrayList_100 |
440 |
864 |
ArrayList_10000 |
40040 |
80064 |
LinkedList |
48 |
80 |
LinkedHashMap |
96 |
144 |
ClassA |
32 |
40 |
ClassB |
40 |
48 |
ClassC |
40 |
56 |
由于现在主机一般都是64位, 64位JVM从JDK1.6.45开始,当JVM最大内存小于32GB时,自动打开压缩指针特性,这样对象的内存占用空间少很多,由上表可以看出,至少减少1/3的空间。
下面我们结合数据库数据来测试
假如mysql数据库有一张emp表,结构如下:
CREATE TABLE `emp` ( `id` int(11) NOT NULL, `create_time` datetime DEFAULT NULL, `modify_time` datetime DEFAULT NULL, `name` varchar(16) DEFAULT NULL, `address` varchar(256) DEFAULT NULL, `age` smallint(6) DEFAULT NULL, `height` decimal(10,2) DEFAULT NULL, `weight` decimal(10,2) DEFAULT NULL, `phone` varchar(20) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8
样本数据如下:
hm.put("id", 1988); hm.put("createTime", new Date()); hm.put("modifyTime", new Date()); hm.put("name", "张三丰"); hm.put("address","浙江杭州市西湖大道188号808室"); hm.put("age",88); hm.put("weight",new BigDecimal(88)); hm.put("height",new BigDecimal(188)); hm.put("phone","1388888888");
按上面样本数据计算,有效数据约80字节,在MySQL里占用空间约120字节
在java里转换为HashMap和Emp对象测试空间如下
对象 |
64位 JVM 压缩指针 |
64位 JVM 非压缩指针 |
HashMap_empty |
128 |
216 |
HashMap_full |
1360 |
1832 |
Emp_empty |
72 |
112 |
Emp_full |
464 |
600 |
从上面测试结果看,数据到JAVA里占用的空间增加了许多,在64位压缩指针下,如果存到HashMap,需要1360字节,空间是数据库约11.3倍,如果存为Emp普通对象,需要464字节,是数据库的3.8倍。
如果我们是一个分页从数据库读取emp信息,每页显示50条记录,用List保存,HashMap需要68KB,emp对象需要23KB。
根据这个简单测试,我们可以总结一个结论:
数据库记录放在JAVA里,用对象(ORM一般的处理方式)需要4倍左右的内存空间,用HashMap这种KV保存需要10倍空间。
如果你的数据和参考数据差异非常大,如主要数据text大文本,那空间一般可以简单的按2倍估算。
以上是一个通用数据测试结论,估大家参考。
下面是测试代码:
import net.sourceforge.sizeof.SizeOf; import java.io.IOException; import java.math.BigDecimal; import java.math.BigInteger; import java.sql.SQLException; import java.sql.Timestamp; import java.util.*; public class TestSize { static { SizeOf.skipStaticField(true); //java.sizeOf will not compute static fields //SizeOf.skipFinalField(true); //java.sizeOf will not compute final fields //SizeOf.skipFlyweightObject(true); //java.sizeOf will not compute well-known flyweight objects } public static void main(String[] args) throws SQLException, IOException, IllegalAccessException { TestSize ts=new TestSize(); ts.testObjectSize(); ts.testDataSize(); System.out.println("ok"); } public void testObjectSize() { System.out.println("Integer:"+SizeOf.deepSizeOf(new Integer(56))); System.out.println("Long:"+SizeOf.sizeOf(new Long(56L))); System.out.println("Object:"+SizeOf.sizeOf(new Object())); System.out.println("Date:"+SizeOf.sizeOf(new Date())); System.out.println("Timestamp:"+SizeOf.sizeOf(new Timestamp(System.currentTimeMillis()))); System.out.println("String_0:"+SizeOf.deepSizeOf(new String())); System.out.println("String_1:"+SizeOf.deepSizeOf(new String("1"))); System.out.println("String_10:"+SizeOf.deepSizeOf(new String("0123456789"))); System.out.println("String_100:"+SizeOf.deepSizeOf("0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789")); System.out.println("StringBuilder:"+SizeOf.deepSizeOf(new StringBuilder())); System.out.println("BigDecimal:"+SizeOf.deepSizeOf(new BigDecimal("34535643.23"))); System.out.println("BigInteger:"+SizeOf.deepSizeOf(new BigInteger("34535643"))); System.out.println("HashMap:"+SizeOf.deepSizeOf(new HashMap())); System.out.println("HashMap_0:"+SizeOf.deepSizeOf(new HashMap(0))); System.out.println("HashMap_100:"+SizeOf.deepSizeOf(new HashMap(100))); System.out.println("HashMap_10000:" + SizeOf.deepSizeOf(new HashMap(10000))); System.out.println("ArrayList:"+SizeOf.deepSizeOf(new ArrayList())); System.out.println("ArrayList_0:"+SizeOf.deepSizeOf(new ArrayList(0))); System.out.println("ArrayList_100:"+SizeOf.deepSizeOf(new ArrayList(100))); System.out.println("ArrayList_10000:"+SizeOf.deepSizeOf(new ArrayList(10000))); System.out.println("LinkedList:"+SizeOf.deepSizeOf(new LinkedList<Object>())); System.out.println("LinkedHashMap:"+SizeOf.deepSizeOf(new LinkedHashMap<Object,Object>())); System.out.println("ClassA:" + SizeOf.deepSizeOf(new ClassA())); System.out.println("ClassB:"+SizeOf.deepSizeOf(new ClassB())); System.out.println("ClassC:"+SizeOf.deepSizeOf(new ClassC())); } public void testDataSize() throws IOException, IllegalAccessException { HashMap hm=new HashMap(); System.out.println("HashMap_empty:"+SizeOf.deepSizeOf(hm)); hm.put("id", 1988); hm.put("createTime", new Date()); hm.put("modifyTime", new Date()); hm.put("name", "张三丰"); hm.put("address","浙江杭州市西湖大道188号808室"); hm.put("age",88); hm.put("weight",new BigDecimal(88)); hm.put("height",new BigDecimal(188)); hm.put("phone","1388888888"); System.out.println("HashMap_full:" + SizeOf.deepSizeOf(hm)); Emp emp=new Emp(); System.out.println("Emp_empty:"+SizeOf.deepSizeOf(emp)); emp.setId(1988); emp.setCreateTime(new Timestamp(System.currentTimeMillis())); emp.setModifyTime(new Timestamp(System.currentTimeMillis())); emp.setName("张三丰"); emp.setAddress("浙江杭州市西湖大道188号808室"); emp.setAge(28); emp.setWeight(new BigDecimal("88")); emp.setHeight(new BigDecimal("188")); emp.setPhone("13888888888"); System.out.println("Emp_full:"+SizeOf.deepSizeOf(emp)); } class ClassA{ } class ClassB extends ClassA{ } class ClassC extends ClassB{ } class Emp{ private Integer id; private Timestamp createTime; private Timestamp modifyTime; private String name; private String address; private Integer age; private BigDecimal height; private BigDecimal weight; private String phone; public Integer getId() { return id; } public void setId(Integer id) { this.id = id; } public Timestamp getCreateTime() { return createTime; } public void setCreateTime(Timestamp createTime) { this.createTime = createTime; } public Timestamp getModifyTime() { return modifyTime; } public void setModifyTime(Timestamp modifyTime) { this.modifyTime = modifyTime; } public String getName() { return name; } public void setName(String name) { this.name = name; } public String getAddress() { return address; } public void setAddress(String address) { this.address = address; } public Integer getAge() { return age; } public void setAge(Integer age) { this.age = age; } public BigDecimal getHeight() { return height; } public void setHeight(BigDecimal height) { this.height = height; } public BigDecimal getWeight() { return weight; } public void setWeight(BigDecimal weight) { this.weight = weight; } public String getPhone() { return phone; } public void setPhone(String phone) { this.phone = phone; } } }

MySQLとSQLiteの主な違いは、設計コンセプトと使用法のシナリオです。1。MySQLは、大規模なアプリケーションとエンタープライズレベルのソリューションに適しており、高性能と高い並行性をサポートしています。 2。SQLiteは、モバイルアプリケーションとデスクトップソフトウェアに適しており、軽量で埋め込みやすいです。

MySQLのインデックスは、データの取得をスピードアップするために使用されるデータベーステーブル内の1つ以上の列の順序付けられた構造です。 1)インデックスは、スキャンされたデータの量を減らすことにより、クエリ速度を改善します。 2)B-Tree Indexは、バランスの取れたツリー構造を使用します。これは、範囲クエリとソートに適しています。 3)CreateIndexステートメントを使用して、createIndexidx_customer_idonorders(customer_id)などのインデックスを作成します。 4)Composite Indexesは、createIndexIDX_CUSTOMER_ORDERONORDERS(Customer_Id、Order_date)などのマルチコラムクエリを最適化できます。 5)説明を使用してクエリ計画を分析し、回避します

MySQLでトランザクションを使用すると、データの一貫性が保証されます。 1)StartTransactionを介してトランザクションを開始し、SQL操作を実行して、コミットまたはロールバックで送信します。 2)SavePointを使用してSave Pointを設定して、部分的なロールバックを許可します。 3)パフォーマンスの最適化の提案には、トランザクション時間の短縮、大規模なクエリの回避、分離レベルの使用が合理的に含まれます。

MySQLの代わりにPostgreSQLが選択されるシナリオには、1)複雑なクエリと高度なSQL関数、2)厳格なデータの整合性と酸コンプライアンス、3)高度な空間関数が必要、4)大規模なデータセットを処理するときに高いパフォーマンスが必要です。 PostgreSQLは、これらの側面でうまく機能し、複雑なデータ処理と高いデータの整合性を必要とするプロジェクトに適しています。

MySQLデータベースのセキュリティは、以下の測定を通じて達成できます。1。ユーザー許可管理:CreateUSERおよびGrantコマンドを通じてアクセス権を厳密に制御します。 2。暗号化された送信:SSL/TLSを構成して、データ送信セキュリティを確保します。 3.データベースのバックアップとリカバリ:MySQLDUMPまたはMySQLPumpを使用して、定期的にデータをバックアップします。 4.高度なセキュリティポリシー:ファイアウォールを使用してアクセスを制限し、監査ロギング操作を有効にします。 5。パフォーマンスの最適化とベストプラクティス:インデックス作成とクエリの最適化と定期的なメンテナンスを通じて、安全性とパフォーマンスの両方を考慮に入れます。

MySQLのパフォーマンスを効果的に監視する方法は? MySqladmin、ShowGlobalStatus、PerconAmonitoring and Management(PMM)、MySQL EnterpriseMonitorなどのツールを使用します。 1. mysqladminを使用して、接続の数を表示します。 2。showglobalstatusを使用して、クエリ番号を表示します。 3.PMMは、詳細なパフォーマンスデータとグラフィカルインターフェイスを提供します。 4.mysqlenterprisemonitorは、豊富な監視機能とアラームメカニズムを提供します。

MySQLとSQLServerの違いは次のとおりです。1)MySQLはオープンソースであり、Webおよび埋め込みシステムに適しています。2)SQLServerはMicrosoftの商用製品であり、エンタープライズレベルのアプリケーションに適しています。ストレージエンジン、パフォーマンスの最適化、アプリケーションシナリオの2つには大きな違いがあります。選択するときは、プロジェクトのサイズと将来のスケーラビリティを考慮する必要があります。

高可用性、高度なセキュリティ、優れた統合を必要とするエンタープライズレベルのアプリケーションシナリオでは、MySQLの代わりにSQLServerを選択する必要があります。 1)SQLServerは、高可用性や高度なセキュリティなどのエンタープライズレベルの機能を提供します。 2)VisualStudioやPowerbiなどのMicrosoftエコシステムと密接に統合されています。 3)SQLSERVERは、パフォーマンスの最適化に優れた機能を果たし、メモリが最適化されたテーブルと列ストレージインデックスをサポートします。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

メモ帳++7.3.1
使いやすく無料のコードエディター

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。
