検索
ホームページデータベースmysql チュートリアルMongoDB入门学习(四):MongoDB的索引

上一篇讲到了MongoDB的基本操作增删查改,对于查询来说,必须按照我们的查询要求去集合中,并将查找到的结果返回,在这个过程中其实是对整个集合中每个文档进行了扫描,如果满足我们的要求就添加到结果集中最后返回。对于小集合来说,这个过程没什么,但是集

上一篇讲到了MongoDB的基本操作增删查改,对于查询来说,必须按照我们的查询要求去集合中,并将查找到的结果返回,在这个过程中其实是对整个集合中每个文档进行了扫描,如果满足我们的要求就添加到结果集中最后返回。对于小集合来说,这个过程没什么,但是集合中数据很大的时候,进行表扫描是一个非常恐怖的事情,于是有了索引一说,索引是用来加速查询的,相当于书籍的目录,有了目录可以很精准的定位要查找内容的位置,从而减少无谓的查找。

1.索引的类型

创建索引可以是在单个字段上,也可以是在多个字段上,这个根据自己的实际情况来选择,创建索引时字段的顺序也是有讲究的。创建索引是通过ensureIndex()方法,需要给该方法传递一个文档形式的数据,其中指定索引的字段和顺序,1代表升序,-1代表降序。

1).默认索引

还记得"_id"吗,这个字段的数据是不能重复的,它就是MongoDB的默认索引,而且不能被删除。

2).单列索引

在单个字段上创建的索引就是单列索引,在查询的过程中可以对该加速对该键的查询,然而对其他键的查询是没有帮助的。单列索引的顺序是不会影响对该键的随即查询,创建单列索引:

> db.people.ensureIndex({"name" : 1})

3).组合索引

还可以在多个键上创建组合索引,此时键的位置和索引的顺序都会影响查询的效率,看下面创建组合索引:

> db.people.ensureIndex({"name" : 1, "age" : 1})
> db.people.ensureIndex({"age" : 1, "name" : 1})

第一种情况会对name排序组织,当name一样时在对age排序,所以对{"name" : 1}和{“name” : 1, "age" : 1}的查询更高效,而第二种情况则对age排序,当age一样再对name排序,所以对{"age" : 1}和{"age" : 1, "name" : 1}的查询更高效。当组合索引包含很多字段的时候,会对前几个键的查询有帮助。

4).内嵌文档索引

还可以对内嵌文档创建索引,和普通键创建索引一样差不多,也可以对内嵌文档创建组合索引:

> db.people.ensureIndex({"friends.name" : 1})
> db.people.ensureIndex({"friends.name" : 1, "friends.age" : 1})

在来看看其他几种形式的索引:

唯一索引
> db.people.ensureIndex({"name" : 1}, {"unique" : true})
> db.people.ensureIndex({"name" : 1}, {"unique" : true, "dropDups" : true})
松散索引
> db.people.ensureIndex({"name" : 1}, {"sparse" : true})
多值索引
> db.people.find()
{"name" : ["mary", "rose"]}
> db.people.ensureIndex({"name" : 1})

唯一索引unique可以保证该键对应的值在集合中是唯一的,如果创建唯一索引的时候,该字段原来就存在了重复的数据,那么就会创建失败,可以加上dropDups字段来消除重复数据,它会保留发现的第一个文档,其他有重复数据的文档都将被删除。

集合中有的文档不存在某些字段,或者某些字段的值为null,那么我们在该字段上创建索引的时候不希望让这些空值的文档参与,那么就定义为松散索引sparse,比如在name上创建索引时,发现有的人在数据库中只有学号,没有名字,那么我们不希望把它们也包含进来,此时就定义为松散索引。

一个键对应的值是一个数组,在该键上创建索引时是一个多值索引,会为数组中每个值生成一个索引元素,相当于分裂成了几个独立的索引项,但是它们还是对应同一个文档数据。

2.索引的管理

索引固然是为查询而生,而且可以为每个键都创建索引,但是索引是需要存储空间的,所以索引不是越多越好,而且创建索引后,每次的插入,更新和删除文档都会产生额外的开销,因为数据库中不但要执行这些操作,而且还要在集合索引中标记这些操作。所以要根据实际情况来创建索引,索引没用之后将其删除。

创建索引是ensureIndex()方法,创建完成后可以通过getIndexes()来查看集合中创建的索引情况:

> db.people.ensureIndex({"name" : 1, "age" : 1})
> db.people.getIndexes()
[
        {
                "v" : 1,
                "key" : {
                        "_id" : 1
                },
                "ns" : "test.people",
                "name" : "_id_"
        },
        {
                "v" : 1,
                "key" : {
                        "name" : 1,
                        "age" : 1
                },
                "ns" : "test.people",
                "name" : "name_1_age_1"
        }
]

可以看到people集合创建了两个索引,一个是"_id",这个是默认索引,另外一个是name和age的组合索引,名字为keyname1_dir_keyname2_dir_...,keyname代表索引的键,dir代表方向,1代表升序,-1代表降序。当然我们也可以自定义索引的名称:

> db.people.ensureIndex({"name" : 1, "age" : 1}, {"name" : "myIndex"})
> db.people.getIndexes()
[
        {
                "v" : 1,
                "key" : {
                        "_id" : 1
                },
                "ns" : "test.people",
                "name" : "_id_"
        },
        {
                "v" : 1,
                "key" : {
                        "name" : 1,
                        "age" : 1
                },
                "ns" : "test.people",
                "name" : "myIndex"
        }
]

删除索引是通过dropIndex():

方式一:
> db.people.dropIndex({"name" : 1, "age" : 1})
{ "nIndexesWas" : 2, "ok" : 1 }
方式二:
> db.runCommand({"dropIndexes" : "people", "index" : "myIndex"})
{ "nIndexesWas" : 2, "ok" : 1 }

索引的元信息存储在每个数据库的system.indexes集合中,不能对其进行插入和删除文档的操作,只能通过ensureIndex和dropIndex进行。

> db.system.indexes.find()
{ "v" : 1, "key" : { "_id" : 1 }, "ns" : "test.people", "name" : "_id_" }
{ "v" : 1, "key" : { "name" : 1, "age" : 1 }, "ns" : "test.people", "name" : "myIndex" }

清空集合中所有的文档是不会将索引删除的,原来创建的索引依然存在,但是直接删除集合的话,该集合的索引也是会被删除的。

3.索引的效率

如果我们定义了很多的索引,那么MongoDB会根据我们的查询选项重新排序,并智能的选择一个最优的来使用,比如我们创建了{"name" : 1, "age" : 1}和{"age" : 1, "class" : 1}两个索引,但是我们的查询项为find({"age" : 10, "name" : "mary"}),那么MongoDB会自动重新排序为find({"name" : "mary", "age" : 10}),并且利用索引{"name" : 1, "age" : 1}来查询。

MongoDB提供了explain工具来帮助我们获得查询方面的很多有用信息,只要对游标调用这个方法就可以得到查询的细节。下面给math集合中添加10W个文档,再来看看使用索引前后的效率对比:

> var arr = [];
> for(var i = 0; i < 100000; i++){
... var doc = {};
... var value = Math.floor(Math.random() * 1000);
... doc["number"] = value;
... arr.push(doc);
... }
100000
> db.math.insert(arr)
> db.math.count()
100000
> db.math.find().limit(10)
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fe5"), "number" : 462 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fe6"), "number" : 123 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fe7"), "number" : 90 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fe8"), "number" : 46 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fe9"), "number" : 244 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fea"), "number" : 972 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61feb"), "number" : 925 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fec"), "number" : 110 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fed"), "number" : 739 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fee"), "number" : 945 }

通过for循环给arr数组中添加10W条数据,然后再批量插入这些数据到math集合中,查看前10条数据,因为是随即生成的值,所以number字段的值会有重复值,我们就来查询462这个值:

创建索引前:
> db.math.find({"number" : 462}).explain()
{
        "cursor" : "BasicCursor",
        "isMultiKey" : false,
        "n" : 94,
        "nscannedObjects" : 100000,
        "nscanned" : 100000,
        "nscannedObjectsAllPlans" : 100000,
        "nscannedAllPlans" : 100000,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 35,
        "indexBounds" : {

        },
        "server" : "server0.169:9352"
}
创建索引后:
> db.math.ensureIndex({"number" : 1})
> db.math.find({"number" : 462}).explain()
{
        "cursor" : "BtreeCursor number_1",
        "isMultiKey" : false,
        "n" : 94,
        "nscannedObjects" : 94,
        "nscanned" : 94,
        "nscannedObjectsAllPlans" : 94,
        "nscannedAllPlans" : 94,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "indexBounds" : {
                "number" : [
                        [
                                462,
                                462
                        ]
                ]
        },
        "server" : "server0.169:9352"
}

这里来看一下有用的信息,"cursor"指用的哪个索引,"nscanned"代表查找了多少个文档,"n"指返回文档的数量,"millis"表示查询所花时间,单位是毫秒。可以看出创建索引前没有使用索引,在全部的文档中查询的,花费了35毫秒,而创建索引后,使用了number_1索引查询,索引存储在B树结构中,只在94个文档中查询,几乎不花时间。

如果有很多索引的话,MongoDB会自动选一个来查询,你也可以通过hint来强制使用某个索引,这里强制使用{"age" : 1, "name" : 1}这个索引:

> db.people.find({"age" : {"$gt" : 10}, "name" : "mary"}).hint({"age" : 1, "name" : 1})
声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
MySQLはSQLiteとどのように違いますか?MySQLはSQLiteとどのように違いますか?Apr 24, 2025 am 12:12 AM

MySQLとSQLiteの主な違いは、設計コンセプトと使用法のシナリオです。1。MySQLは、大規模なアプリケーションとエンタープライズレベルのソリューションに適しており、高性能と高い並行性をサポートしています。 2。SQLiteは、モバイルアプリケーションとデスクトップソフトウェアに適しており、軽量で埋め込みやすいです。

MySQLのインデックスとは何ですか?また、パフォーマンスをどのように改善しますか?MySQLのインデックスとは何ですか?また、パフォーマンスをどのように改善しますか?Apr 24, 2025 am 12:09 AM

MySQLのインデックスは、データの取得をスピードアップするために使用されるデータベーステーブル内の1つ以上の列の順序付けられた構造です。 1)インデックスは、スキャンされたデータの量を減らすことにより、クエリ速度を改善します。 2)B-Tree Indexは、バランスの取れたツリー構造を使用します。これは、範囲クエリとソートに適しています。 3)CreateIndexステートメントを使用して、createIndexidx_customer_idonorders(customer_id)などのインデックスを作成します。 4)Composite Indexesは、createIndexIDX_CUSTOMER_ORDERONORDERS(Customer_Id、Order_date)などのマルチコラムクエリを最適化できます。 5)説明を使用してクエリ計画を分析し、回避します

データの一貫性を確保するために、MySQLでトランザクションを使用する方法を説明します。データの一貫性を確保するために、MySQLでトランザクションを使用する方法を説明します。Apr 24, 2025 am 12:09 AM

MySQLでトランザクションを使用すると、データの一貫性が保証されます。 1)StartTransactionを介してトランザクションを開始し、SQL操作を実行して、コミットまたはロールバックで送信します。 2)SavePointを使用してSave Pointを設定して、部分的なロールバックを許可します。 3)パフォーマンスの最適化の提案には、トランザクション時間の短縮、大規模なクエリの回避、分離レベルの使用が合理的に含まれます。

どのシナリオでMySQLよりもPostgreSQLを選択できますか?どのシナリオでMySQLよりもPostgreSQLを選択できますか?Apr 24, 2025 am 12:07 AM

MySQLの代わりにPostgreSQLが選択されるシナリオには、1)複雑なクエリと高度なSQL関数、2)厳格なデータの整合性と酸コンプライアンス、3)高度な空間関数が必要、4)大規模なデータセットを処理するときに高いパフォーマンスが必要です。 PostgreSQLは、これらの側面でうまく機能し、複雑なデータ処理と高いデータの整合性を必要とするプロジェクトに適しています。

MySQLデータベースをどのように保護できますか?MySQLデータベースをどのように保護できますか?Apr 24, 2025 am 12:04 AM

MySQLデータベースのセキュリティは、以下の測定を通じて達成できます。1。ユーザー許可管理:CreateUSERおよびGrantコマンドを通じてアクセス権を厳密に制御します。 2。暗号化された送信:SSL/TLSを構成して、データ送信セキュリティを確保します。 3.データベースのバックアップとリカバリ:MySQLDUMPまたはMySQLPumpを使用して、定期的にデータをバックアップします。 4.高度なセキュリティポリシー:ファイアウォールを使用してアクセスを制限し、監査ロギング操作を有効にします。 5。パフォーマンスの最適化とベストプラクティス:インデックス作成とクエリの最適化と定期的なメンテナンスを通じて、安全性とパフォーマンスの両方を考慮に入れます。

MySQLのパフォーマンスを監視するために使用できるツールは何ですか?MySQLのパフォーマンスを監視するために使用できるツールは何ですか?Apr 23, 2025 am 12:21 AM

MySQLのパフォーマンスを効果的に監視する方法は? MySqladmin、ShowGlobalStatus、PerconAmonitoring and Management(PMM)、MySQL EnterpriseMonitorなどのツールを使用します。 1. mysqladminを使用して、接続の数を表示します。 2。showglobalstatusを使用して、クエリ番号を表示します。 3.PMMは、詳細なパフォーマンスデータとグラフィカルインターフェイスを提供します。 4.mysqlenterprisemonitorは、豊富な監視機能とアラームメカニズムを提供します。

MySQLはSQL Serverとどのように違いますか?MySQLはSQL Serverとどのように違いますか?Apr 23, 2025 am 12:20 AM

MySQLとSQLServerの違いは次のとおりです。1)MySQLはオープンソースであり、Webおよび埋め込みシステムに適しています。2)SQLServerはMicrosoftの商用製品であり、エンタープライズレベルのアプリケーションに適しています。ストレージエンジン、パフォーマンスの最適化、アプリケーションシナリオの2つには大きな違いがあります。選択するときは、プロジェクトのサイズと将来のスケーラビリティを考慮する必要があります。

どのシナリオでMySQLよりもSQL Serverを選択できますか?どのシナリオでMySQLよりもSQL Serverを選択できますか?Apr 23, 2025 am 12:20 AM

高可用性、高度なセキュリティ、優れた統合を必要とするエンタープライズレベルのアプリケーションシナリオでは、MySQLの代わりにSQLServerを選択する必要があります。 1)SQLServerは、高可用性や高度なセキュリティなどのエンタープライズレベルの機能を提供します。 2)VisualStudioやPowerbiなどのMicrosoftエコシステムと密接に統合されています。 3)SQLSERVERは、パフォーマンスの最適化に優れた機能を果たし、メモリが最適化されたテーブルと列ストレージインデックスをサポートします。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境