ホームページ >データベース >mysql チュートリアル >带有小数点的10进制数转换成2进制

带有小数点的10进制数转换成2进制

WBOY
WBOYオリジナル
2016-06-07 15:48:302631ブラウズ

原文:http://topic.csdn.net/u/20090326/18/c96364bc-38cc-42d2-962e-420600625720.html?seed=1902653946r=79968420#r_79968420 从存储结构和算法上来讲,double和float是一样的,不一样的地方仅仅是float是32位的,double是64位的,所以double能存储更高的

原文:http://topic.csdn.net/u/20090326/18/c96364bc-38cc-42d2-962e-420600625720.html?seed=1902653946&r=79968420#r_79968420


从存储结构和算法上来讲,double和float是一样的,不一样的地方仅仅是float是32位的,double是64位的,所以double能存储更高的精度。

  任何数据在内存中都是以二进制(0或1)顺序存储的,每一个1或0被称为1位,而在x86CPU上一个字节是8位。比如一个16位(2字节)的short int型变量的值是1000,那么它的二进制表达就是:00000011 11101000。由于Intel CPU的架构原因,它是按字节倒序存储的,那么就因该是这样:11101000 00000011,这就是定点数1000在内存中的结构。

  目前C/C++编译器标准都遵照IEEE制定的浮点数表示法来进行float,double运算。这种结构是一种科学计数法,用符号、指数和尾数来表示,底数定为2——即把一个浮点数表示为尾数乘以2的指数次方再添上符号。下面是具体的规格:

````````符号位 阶码 尾数 长度
float 1 8 23 32
double 1 11 52 64
临时数 1 15 64 80

由于通常C编译器默认浮点数是double型的,下面以double为例:
共计64位,折合8字节。由最高到最低位分别是第63、62、61、……、0位:
  最高位63位是符号位,1表示该数为负,0正;
  62-52位,一共11位是指数位;
  51-0位,一共52位是尾数位。


  按照IEEE浮点数表示法,下面将把double型浮点数38414.4转换为十六进制代码。
  把整数部和小数部分开处理:整数部直接化十六进制:960E。小数的处理:
0.4=0.5*0+0.25*1+0.125*1+0.0625*0+……
  实际上这永远算不完!这就是著名的浮点数精度问题。所以直到加上前面的整数部分算够53位就行了(隐藏位技术:最高位的1不写入内存)。
  如果你够耐心,手工算到53位那么因该是:38414.4(10)=1001011000001110.0110101010101010101010101010101010101(2)
科学记数法为:1.001……乘以2的15次方。指数为15!
  于是来看阶码,一共11位,可以表示范围是-1024 ~ 1023。因为指数可以为负,为了便于计算,规定都先加上1023,在这里,15+1023=1038。二进制表示为:100 00001110
  符号位:正—— 0 !
  合在一起(尾数二进制最高位的1不要):
01000000 11100010 11000001 11001101 01010101 01010101 01010101 01010101
  按字节倒序存储的十六进制数就是:

55 55 55 55 CD C1 E2 40


找点资料看看就明白了:

任何数据在内存中都是以二进制(1或着0)顺序存储的,每一个1或着0被称为1位,而在x86CPU上一个字节是8位。比如

一个16位(2字节)的short int型变量的值是1156,那么它的二进制表达就是:00000100 10000100。由于Intel CPU的

架构是Little Endian(请参数机算机原理相关知识),所以它是按字节倒序存储的,那么就因该是这样:10000100 

00000100,这就是定点数1156在内存中的结构。

那么浮点数是如何存储的呢?目前已知的所有的C/C++编译器都是按照IEEE(国际电子电器工程师协会)制定的IEEE 浮

点数表示法来进行运算的。这种结构是一种科学表示法,用符号(正或负)、指数和尾数来表示,底数被确定为2,也

就是说是把一个浮点数表示为尾数乘以2的指数次方再加上符号。下面来看一下具体的float的规格:

float
共计32位,折合4字节
由最高到最低位分别是第31、30、29、……、0位
31位是符号位,1表示该数为负,0反之。
30-23位,一共8位是指数位。
22-0位,一共23位是尾数位。
每8位分为一组,分成4组,分别是A组、B组、C组、D组。
每一组是一个字节,在内存中逆序存储,即:DCBA

我们先不考虑逆序存储的问题,因为那样会把读者彻底搞晕,所以我先按照顺序的来讲,最后再把他们翻过来就行了。

现在让我们按照IEEE浮点数表示法,一步步的将float型浮点数12345.0f转换为十六进制代码。在处理这种不带小数的

浮点数时,直接将整数部转化为二进制表示:1 11100010 01000000也可以这样表示:11110001001000000.0然后将小数

点向左移,一直移到离最高位只有1位,就是最高位的1:1.11100010010000000一共移动了16位,在布耳运算中小数点

每向左移一位就等于在以2为底的科学计算法表示中指数+1,所以原数就等于这样:1.11100010010000000 * ( 2 ^ 16 

)好了,现在我们要的尾数和指数都出来了。显而易见,最高位永远是1,因为你不可能把买了16个鸡蛋说成是买了0016

个鸡蛋吧?(呵呵,可别拿你买的臭鸡蛋甩我~),所以这个1我们还有必要保留他吗?(众:没有!)好的,我们删掉

他。这样尾数的二进制就变成了:11100010010000000最后在尾数的后面补0,一直到补够23位:

11100010010000000000000(MD,这些个0差点没把我数的背过气去~)

再回来看指数,一共8位,可以表示范围是0 - 255的无符号整数,也可以表示-128 - 127的有符号整数。但因为指数是

可以为负的,所以为了统一把十进制的整数化为二进制时,都先加上127,在这里,我们的16加上127后就变成了143,

二进制表示为:10001111
12345.0f这个数是正的,所以符号位是0,那么我们按照前面讲的格式把它拼起来:
0 10001111 11100010010000000000000
01000111 11110001 00100000 00000000
再转化为16进制为:47 F1 20 00,最后把它翻过来,就成了:00 20 F1 47。
现在你自己把54321.0f转为二进制表示,自己动手练一下!

有了上面的基础后,下面我再举一个带小数的例子来看一下为什么会出现精度问题。
按照IEEE浮点数表示法,将float型浮点数123.456f转换为十六进制代码。对于这种带小数的就需要把整数部和小数部

分开处理。整数部直接化二进制:100100011。小数部的处理比较麻烦一些,也不太好讲,可能反着讲效果好一点,比

如有一个十进制纯小数0.57826,那么5是十分位,位阶是1/10;7是百分位,位阶是1/100;8是千分位,位阶是1/1000

……,这些位阶分母的关系是10^1、10^2、10^3……,现假设每一位的序列是{S1、S2、S3、……、Sn},在这里就是5

、7、8、2、6,而这个纯小数就可以这样表示:n = S1 * ( 1 / ( 10 ^ 1 ) ) + S2 * ( 1 / ( 10 ^ 2 ) ) + S3 * ( 1 / ( 10 ^ 3 ) ) + …… + Sn * ( 1 / ( 10 ^ n ) )。把这个公式推广到b进制纯小数中就是这样:

n = S1 * ( 1 / ( b ^ 1 ) ) + S2 * ( 1 / ( b ^ 2 ) ) + S3 * ( 1 / ( b ^ 3 ) ) + …… + Sn * ( 1 / ( b ^ n ) )







声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。