【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】 目的 实际事物模型中,并非所有东西都是线性可分的。 需要寻找一种方法对线性不可分数据进行划分。 原理 ,我们推导出对于线性可分数据,最佳划分超平面应满足: 现在我们想引入
【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】
目的
- 实际事物模型中,并非所有东西都是线性可分的。
- 需要寻找一种方法对线性不可分数据进行划分。
原理
,我们推导出对于线性可分数据,最佳划分超平面应满足:
现在我们想引入一些东西,来表示那些被错分的数据点(比如噪点),对划分的影响。
如何来表示这些影响呢?
被错分的点,离自己应当存在的区域越远,就代表了,这个点“错”得越严重。
所以我们引入,为对应样本离同类区域的距离。
接下来的问题是,如何将这种错的程度,转换为和原模型相同的度量呢?
我们再引入一个常量C,表示和原模型度量的转换关系,用C对
进行加权和,来表征错分点对原模型的影响,这样我们得到新的最优化问题模型:
关于参数C的选择, 明显的取决于训练样本的分布情况。 尽管并不存在一个普遍的答案,但是记住下面几点规则还是有用的:
- C比较大时分类错误率较小,但是间隔也较小。 在这种情形下, 错分类对模型函数产生较大的影响,既然优化的目的是为了最小化这个模型函数,那么错分类的情形必然会受到抑制。
- C比较小时间隔较大,但是分类错误率也较大。 在这种情形下,模型函数中错分类之和这一项对优化过程的影响变小,优化过程将更加关注于寻找到一个能产生较大间隔的超平面。
说白了,C的大小表征了,错分数据对原模型的影响程度。于是C越大,优化时越关注错分问题。反之越关注能否产生一个较大间隔的超平面。
开始使用
#include <iostream><span> #include </span><opencv2><span> #include </span><opencv2><span> #include </span><opencv2> <span>#define</span> NTRAINING_SAMPLES 100 <span>//</span><span> 每类训练样本的数量</span> <span>#define</span> FRAC_LINEAR_SEP 0.9f <span>//</span><span> 线性可分部分的样本组成比例</span> <span>using</span> <span>namespace</span><span> cv; </span><span>using</span> <span>namespace</span><span> std; </span><span>int</span><span> main(){ </span><span>//</span><span> 用于显示的数据</span> <span>const</span> <span>int</span> WIDTH = <span>512</span>, HEIGHT = <span>512</span><span>; Mat I </span>=<span> Mat::zeros(HEIGHT, WIDTH, CV_8UC3); </span><span>/*</span><span> 1. 随即产生训练数据 </span><span>*/</span><span> Mat trainData(</span><span>2</span>*NTRAINING_SAMPLES, <span>2</span><span>, CV_32FC1); Mat labels (</span><span>2</span>*NTRAINING_SAMPLES, <span>1</span><span>, CV_32FC1); RNG rng(</span><span>100</span>); <span>//</span><span> 生成随即数 </span><span>//</span><span> 设置线性可分的训练数据</span> <span>int</span> nLinearSamples = (<span>int</span>) (FRAC_LINEAR_SEP *<span> NTRAINING_SAMPLES); </span><span>//</span><span> 生成分类1的随机点</span> Mat trainClass = trainData.rowRange(<span>0</span><span>, nLinearSamples); </span><span>//</span><span> 点的x坐标在[0, 0.4)之间</span> Mat c = trainClass.colRange(<span>0</span>, <span>1</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span>), Scalar(<span>0.4</span> *<span> WIDTH)); </span><span>//</span><span> 点的y坐标在[0, 1)之间</span> c = trainClass.colRange(<span>1</span>,<span>2</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT)); </span><span>//</span><span> 生成分类2的随机点</span> trainClass = trainData.rowRange(<span>2</span>*NTRAINING_SAMPLES-nLinearSamples, <span>2</span>*<span>NTRAINING_SAMPLES); </span><span>//</span><span> 点的x坐标在[0.6, 1]之间</span> c = trainClass.colRange(<span>0</span> , <span>1</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>0.6</span>*<span>WIDTH), Scalar(WIDTH)); </span><span>//</span><span> 点的y坐标在[0, 1)之间</span> c = trainClass.colRange(<span>1</span>,<span>2</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT)); </span><span>/*</span><span> 设置非线性可分的训练数据 </span><span>*/</span> <span>//</span><span> 生成分类1和分类2的随机点</span> trainClass = trainData.rowRange( nLinearSamples, <span>2</span>*NTRAINING_SAMPLES-<span>nLinearSamples); </span><span>//</span><span> 点的x坐标在[0.4, 0.6)之间</span> c = trainClass.colRange(<span>0</span>,<span>1</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>0.4</span>*WIDTH), Scalar(<span>0.6</span>*<span>WIDTH)); </span><span>//</span><span> 点的y坐标在[0, 1)之间</span> c = trainClass.colRange(<span>1</span>,<span>2</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT)); </span><span>/*</span><span>*/</span><span> labels.rowRange( </span><span>0</span>, NTRAINING_SAMPLES).setTo(<span>1</span>); <span>//</span><span> Class 1</span> labels.rowRange(NTRAINING_SAMPLES, <span>2</span>*NTRAINING_SAMPLES).setTo(<span>2</span>); <span>//</span><span> Class 2</span> <span>/*</span><span> 设置支持向量机参数 </span><span>*/</span><span> CvSVMParams </span><span>params</span><span>; </span><span>params</span>.svm_type =<span> SVM::C_SVC; </span><span>params</span>.C = <span>0.1</span><span>; </span><span>params</span>.kernel_type =<span> SVM::LINEAR; </span><span>params</span>.term_crit = TermCriteria(CV_TERMCRIT_ITER, (<span>int</span>)1e7, 1e-<span>6</span><span>); </span><span>/*</span><span> 3. 训练支持向量机 </span><span>*/</span><span> cout </span>"<span>Starting training process</span><span>"</span> endl; CvSVM svm; svm.train(trainData, labels, Mat(), Mat(), <span>params</span><span>); cout </span>"<span>Finished training process</span><span>"</span> endl; <span>/*</span><span> 4. 显示划分区域 </span><span>*/</span><span> Vec3b green(</span><span>0</span>,<span>100</span>,<span>0</span>), blue (<span>100</span>,<span>0</span>,<span>0</span><span>); </span><span>for</span> (<span>int</span> i = <span>0</span>; i i) <span>for</span> (<span>int</span> j = <span>0</span>; j j){ Mat sampleMat = (Mat_float>(<span>1</span>,<span>2</span>) i, j); <span>float</span> response =<span> svm.predict(sampleMat); </span><span>if</span> (response == <span>1</span>) I.at<vec3b>(j, i) =<span> green; </span><span>else</span> <span>if</span> (response == <span>2</span>) I.at<vec3b>(j, i) =<span> blue; } </span><span>/*</span><span> 5. 显示训练数据 </span><span>*/</span> <span>int</span> thick = -<span>1</span><span>; </span><span>int</span> lineType = <span>8</span><span>; </span><span>float</span><span> px, py; </span><span>//</span><span> 分类1</span> <span>for</span> (<span>int</span> i = <span>0</span>; i i){ px = trainData.atfloat>(i,<span>0</span><span>); py </span>= trainData.atfloat>(i,<span>1</span><span>); circle(I, Point( (</span><span>int</span>) px, (<span>int</span>) py ), <span>3</span>, Scalar(<span>0</span>, <span>255</span>, <span>0</span><span>), thick, lineType); } </span><span>//</span><span> 分类2</span> <span>for</span> (<span>int</span> i = NTRAINING_SAMPLES; i 2*NTRAINING_SAMPLES; ++<span>i){ px </span>= trainData.atfloat>(i,<span>0</span><span>); py </span>= trainData.atfloat>(i,<span>1</span><span>); circle(I, Point( (</span><span>int</span>) px, (<span>int</span>) py ), <span>3</span>, Scalar(<span>255</span>, <span>0</span>, <span>0</span><span>), thick, lineType); } </span><span>/*</span><span> 6. 显示支持向量 */</span> thick = <span>2</span><span>; lineType </span>= <span>8</span><span>; </span><span>int</span> x =<span> svm.get_support_vector_count(); </span><span>for</span> (<span>int</span> i = <span>0</span>; i i) { <span>const</span> <span>float</span>* v =<span> svm.get_support_vector(i); circle( I, Point( (</span><span>int</span>) v[<span>0</span>], (<span>int</span>) v[<span>1</span>]), <span>6</span>, Scalar(<span>128</span>, <span>128</span>, <span>128</span><span>), thick, lineType); } imwrite(</span><span>"</span><span>result.png</span><span>"</span>, I); <span>//</span><span> 保存图片</span> imshow(<span>"</span><span>SVM线性不可分数据划分</span><span>"</span>, I); <span>//</span><span> 显示给用户</span> waitKey(<span>0</span><span>); }</span></vec3b></vec3b></opencv2></opencv2></opencv2></iostream>
设置SVM参数
这里的参数设置可以参考一下的API。
<span>CvSVMParams</span> <span>params</span><span>;</span> <span>params</span><span>.</span><span>svm_type</span> <span>=</span> <span>SVM</span><span>::</span><span>C_SVC</span><span>;</span> <span>params</span><span>.</span><span>C</span> <span>=</span> <span>0.1</span><span>;</span> <span>params</span><span>.</span><span>kernel_type</span> <span>=</span> <span>SVM</span><span>::</span><span>LINEAR</span><span>;</span> <span>params</span><span>.</span><span>term_crit</span> <span>=</span> <span>TermCriteria</span><span>(</span><span>CV_TERMCRIT_ITER</span><span>,</span> <span>(</span><span>int</span><span>)</span><span>1e7</span><span>,</span> <span>1e-6</span><span>);</span>
可以看到,这次使用的是C类支持向量分类机。其参数C的值为0.1。
结果
- 程序创建了一张图像,在其中显示了训练样本,其中一个类显示为浅绿色圆圈,另一个类显示为浅蓝色圆圈。
- 训练得到SVM,并将图像的每一个像素分类。 分类的结果将图像分为蓝绿两部分,中间线就是最优分割超平面。由于样本非线性可分, 自然就有一些被错分类的样本。 一些绿色点被划分到蓝色区域, 一些蓝色点被划分到绿色区域。
- 最后支持向量通过灰色边框加重显示。
被山寨的原文
Support Vector Machines for Non-Linearly Separable Data . OpenCV.org

todropaviewinmysql、 "dropviewifexistsview_name;" andtomodifyaviewを使用して、 "createorreplaceviewview_nameasselect ..."を使用します

mysqlviewscanefectiveativeativeizedesignpatternslikeadapter、decorator、factory、andobserver.1)adapterpatternadaptsdatafromdifferenttablesintoaunifiedview.2)decoratorpatternenhancesdatawithedfieldsfieldsiffieldsiffieldsiffiedを

viewsinmysqlarebenefentialforsimprifiningcomplexqueries、拡張セキュリティ、ダタコンシーニング、および最適化されたパフォーマンスを保証する1)itsmplifyififycomplexqueriesbyencapsulsingthemintoreusableviews.2)viewsencurationecuritybycontrollingcescesces.3)

to CreateAsimpleviewinmysql、usethecreateviewstatement.1)DefinetheTheTheThecreateview_nameas.2)SpecifyTheSelectStatementtatementtatementtatementtatementtatementtatementedeSireddata.3)

tocleateusersinmysql、usethecreateuserstatement.1)foralocaluser:createUser'localuser '@' localhost'identifidedifiedifiedified 'securepassword';

mysqlviewshavelimitations:1)supportallsqloperations、制限、dataManipulationswithjoinsorubqueries.2)それらは、特にパフォーマンス、特にパルフェクソルラージャターセット

reperusermanmanagementInmysqliscialforenhancingsecurationsinginuring databaseaperation.1)usecreateusertoaddusers、指定connectionsourcewith@'localhost'or@'% '。

mysqldoes notimposeahardlimitontriggers、しかしpracticalfactorsdeTerminetheireffectiveuse:1)serverconufigurationStriggermanagement; 2)complentiggersincreaseSystemload;


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。
