ホームページ >データベース >mysql チュートリアル >【OpenCV2.4】SVM处理线性不可分的例子
【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】 目的 实际事物模型中,并非所有东西都是线性可分的。 需要寻找一种方法对线性不可分数据进行划分。 原理 ,我们推导出对于线性可分数据,最佳划分超平面应满足: 现在我们想引入
【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】
目的
原理
,我们推导出对于线性可分数据,最佳划分超平面应满足:
现在我们想引入一些东西,来表示那些被错分的数据点(比如噪点),对划分的影响。
如何来表示这些影响呢?
被错分的点,离自己应当存在的区域越远,就代表了,这个点“错”得越严重。
所以我们引入,为对应样本离同类区域的距离。
接下来的问题是,如何将这种错的程度,转换为和原模型相同的度量呢?
我们再引入一个常量C,表示和原模型度量的转换关系,用C对进行加权和,来表征错分点对原模型的影响,这样我们得到新的最优化问题模型:
关于参数C的选择, 明显的取决于训练样本的分布情况。 尽管并不存在一个普遍的答案,但是记住下面几点规则还是有用的:
说白了,C的大小表征了,错分数据对原模型的影响程度。于是C越大,优化时越关注错分问题。反之越关注能否产生一个较大间隔的超平面。
开始使用
#include <iostream><span> #include </span><opencv2><span> #include </span><opencv2><span> #include </span><opencv2> <span>#define</span> NTRAINING_SAMPLES 100 <span>//</span><span> 每类训练样本的数量</span> <span>#define</span> FRAC_LINEAR_SEP 0.9f <span>//</span><span> 线性可分部分的样本组成比例</span> <span>using</span> <span>namespace</span><span> cv; </span><span>using</span> <span>namespace</span><span> std; </span><span>int</span><span> main(){ </span><span>//</span><span> 用于显示的数据</span> <span>const</span> <span>int</span> WIDTH = <span>512</span>, HEIGHT = <span>512</span><span>; Mat I </span>=<span> Mat::zeros(HEIGHT, WIDTH, CV_8UC3); </span><span>/*</span><span> 1. 随即产生训练数据 </span><span>*/</span><span> Mat trainData(</span><span>2</span>*NTRAINING_SAMPLES, <span>2</span><span>, CV_32FC1); Mat labels (</span><span>2</span>*NTRAINING_SAMPLES, <span>1</span><span>, CV_32FC1); RNG rng(</span><span>100</span>); <span>//</span><span> 生成随即数 </span><span>//</span><span> 设置线性可分的训练数据</span> <span>int</span> nLinearSamples = (<span>int</span>) (FRAC_LINEAR_SEP *<span> NTRAINING_SAMPLES); </span><span>//</span><span> 生成分类1的随机点</span> Mat trainClass = trainData.rowRange(<span>0</span><span>, nLinearSamples); </span><span>//</span><span> 点的x坐标在[0, 0.4)之间</span> Mat c = trainClass.colRange(<span>0</span>, <span>1</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span>), Scalar(<span>0.4</span> *<span> WIDTH)); </span><span>//</span><span> 点的y坐标在[0, 1)之间</span> c = trainClass.colRange(<span>1</span>,<span>2</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT)); </span><span>//</span><span> 生成分类2的随机点</span> trainClass = trainData.rowRange(<span>2</span>*NTRAINING_SAMPLES-nLinearSamples, <span>2</span>*<span>NTRAINING_SAMPLES); </span><span>//</span><span> 点的x坐标在[0.6, 1]之间</span> c = trainClass.colRange(<span>0</span> , <span>1</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>0.6</span>*<span>WIDTH), Scalar(WIDTH)); </span><span>//</span><span> 点的y坐标在[0, 1)之间</span> c = trainClass.colRange(<span>1</span>,<span>2</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT)); </span><span>/*</span><span> 设置非线性可分的训练数据 </span><span>*/</span> <span>//</span><span> 生成分类1和分类2的随机点</span> trainClass = trainData.rowRange( nLinearSamples, <span>2</span>*NTRAINING_SAMPLES-<span>nLinearSamples); </span><span>//</span><span> 点的x坐标在[0.4, 0.6)之间</span> c = trainClass.colRange(<span>0</span>,<span>1</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>0.4</span>*WIDTH), Scalar(<span>0.6</span>*<span>WIDTH)); </span><span>//</span><span> 点的y坐标在[0, 1)之间</span> c = trainClass.colRange(<span>1</span>,<span>2</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT)); </span><span>/*</span><span>*/</span><span> labels.rowRange( </span><span>0</span>, NTRAINING_SAMPLES).setTo(<span>1</span>); <span>//</span><span> Class 1</span> labels.rowRange(NTRAINING_SAMPLES, <span>2</span>*NTRAINING_SAMPLES).setTo(<span>2</span>); <span>//</span><span> Class 2</span> <span>/*</span><span> 设置支持向量机参数 </span><span>*/</span><span> CvSVMParams </span><span>params</span><span>; </span><span>params</span>.svm_type =<span> SVM::C_SVC; </span><span>params</span>.C = <span>0.1</span><span>; </span><span>params</span>.kernel_type =<span> SVM::LINEAR; </span><span>params</span>.term_crit = TermCriteria(CV_TERMCRIT_ITER, (<span>int</span>)1e7, 1e-<span>6</span><span>); </span><span>/*</span><span> 3. 训练支持向量机 </span><span>*/</span><span> cout </span>"<span>Starting training process</span><span>"</span> endl; CvSVM svm; svm.train(trainData, labels, Mat(), Mat(), <span>params</span><span>); cout </span>"<span>Finished training process</span><span>"</span> endl; <span>/*</span><span> 4. 显示划分区域 </span><span>*/</span><span> Vec3b green(</span><span>0</span>,<span>100</span>,<span>0</span>), blue (<span>100</span>,<span>0</span>,<span>0</span><span>); </span><span>for</span> (<span>int</span> i = <span>0</span>; i i) <span>for</span> (<span>int</span> j = <span>0</span>; j j){ Mat sampleMat = (Mat_float>(<span>1</span>,<span>2</span>) i, j); <span>float</span> response =<span> svm.predict(sampleMat); </span><span>if</span> (response == <span>1</span>) I.at<vec3b>(j, i) =<span> green; </span><span>else</span> <span>if</span> (response == <span>2</span>) I.at<vec3b>(j, i) =<span> blue; } </span><span>/*</span><span> 5. 显示训练数据 </span><span>*/</span> <span>int</span> thick = -<span>1</span><span>; </span><span>int</span> lineType = <span>8</span><span>; </span><span>float</span><span> px, py; </span><span>//</span><span> 分类1</span> <span>for</span> (<span>int</span> i = <span>0</span>; i i){ px = trainData.atfloat>(i,<span>0</span><span>); py </span>= trainData.atfloat>(i,<span>1</span><span>); circle(I, Point( (</span><span>int</span>) px, (<span>int</span>) py ), <span>3</span>, Scalar(<span>0</span>, <span>255</span>, <span>0</span><span>), thick, lineType); } </span><span>//</span><span> 分类2</span> <span>for</span> (<span>int</span> i = NTRAINING_SAMPLES; i 2*NTRAINING_SAMPLES; ++<span>i){ px </span>= trainData.atfloat>(i,<span>0</span><span>); py </span>= trainData.atfloat>(i,<span>1</span><span>); circle(I, Point( (</span><span>int</span>) px, (<span>int</span>) py ), <span>3</span>, Scalar(<span>255</span>, <span>0</span>, <span>0</span><span>), thick, lineType); } </span><span>/*</span><span> 6. 显示支持向量 */</span> thick = <span>2</span><span>; lineType </span>= <span>8</span><span>; </span><span>int</span> x =<span> svm.get_support_vector_count(); </span><span>for</span> (<span>int</span> i = <span>0</span>; i i) { <span>const</span> <span>float</span>* v =<span> svm.get_support_vector(i); circle( I, Point( (</span><span>int</span>) v[<span>0</span>], (<span>int</span>) v[<span>1</span>]), <span>6</span>, Scalar(<span>128</span>, <span>128</span>, <span>128</span><span>), thick, lineType); } imwrite(</span><span>"</span><span>result.png</span><span>"</span>, I); <span>//</span><span> 保存图片</span> imshow(<span>"</span><span>SVM线性不可分数据划分</span><span>"</span>, I); <span>//</span><span> 显示给用户</span> waitKey(<span>0</span><span>); }</span></vec3b></vec3b></opencv2></opencv2></opencv2></iostream>
设置SVM参数
这里的参数设置可以参考一下的API。
<span>CvSVMParams</span> <span>params</span><span>;</span> <span>params</span><span>.</span><span>svm_type</span> <span>=</span> <span>SVM</span><span>::</span><span>C_SVC</span><span>;</span> <span>params</span><span>.</span><span>C</span> <span>=</span> <span>0.1</span><span>;</span> <span>params</span><span>.</span><span>kernel_type</span> <span>=</span> <span>SVM</span><span>::</span><span>LINEAR</span><span>;</span> <span>params</span><span>.</span><span>term_crit</span> <span>=</span> <span>TermCriteria</span><span>(</span><span>CV_TERMCRIT_ITER</span><span>,</span> <span>(</span><span>int</span><span>)</span><span>1e7</span><span>,</span> <span>1e-6</span><span>);</span>
可以看到,这次使用的是C类支持向量分类机。其参数C的值为0.1。
结果
被山寨的原文
Support Vector Machines for Non-Linearly Separable Data . OpenCV.org