一、引言 当数据库运行慢时,我们需要找出其中的性能瓶颈。找出性能瓶颈的第一步就是找出数据库正在忙什么,然后再找出其中最慢的操作进行优化。MongoDB提供了数据库分析器收集在实例上执行的写操作、游标、命令等详细信息。MongoDB数据库分析器可以在实例级
一、引言
当数据库运行慢时,我们需要找出其中的性能瓶颈。找出性能瓶颈的第一步就是找出数据库正在忙什么,然后再找出其中最慢的操作进行优化。MongoDB提供了数据库分析器收集在实例上执行的写操作、游标、命令等详细信息。MongoDB数据库分析器可以在实例级别打开,也可以在数据库级别打开。
MongoDB数据库分析器可以设置三个级别:
0 - 分析器处在关闭状态,不收集任何数据
1 - 仅仅收集较慢操作的分析数据。默认情况下如果一个操作花费的时间超过100ms,就认为是较慢的操作。
2 - 收集所有数据库操作的分析数据。
二、system.profile集合
MongoDB数据库分析器收集的数据将存放在system.profile集合中。system.profile是一个固定大小的集合,数据将循环写入该集合。当用完所有分配的空间后,MongoDB将会覆盖集合中最老的文档。默认情况下,system.profile集合大小为4M。
system.profile集合常用的字段包括:
ts:数据库操作发生的时间戳
op:操作类型,可能的取值为insert,query,update,remove,getmore,command
ns:操作对象的名字
query:查询语句
nreturned:返回的文档数
nscanned:为执行操作扫描的文档数
millis:执行操作花费的时间
三、设置数据库分析器级别
MongoDB数据库分析器具有三个级别,可以通过mongo Shell设置:
db.getProfilingLevel():获取当前的profile级别
db.getProfilingStatus():获取当前的profile级别,同时返回slowms阈值。
db.setProfilingLevel():设置profile级别
我们可以尝试着把分析器级别设置为1,把slowms设置为500ms:
db.setProfilingLevel(1,500)
{ "was" : 0, "slowms" : 100, "ok" : 1 }
执行结果中was字段显示原分析器级别为0,slowms字段显示原慢操作阈值为100ms。使db.getProfilingStatus()查询新的分析器设置:
db.getProfilingStatus()
{ "was" : 1, "slowms" : 500 }
执行结果显示分析器级别已设置为1,表明mongodb将记录执行时间超过500ms的所有操作。
四、查看分析器数据并进行分析
首先我们进行初始的数据准备,建立mydb库,在其中建test集合,并插入1000万条数据:
use mydb
db.test.drop()
for (var i=1;i
清空system.profile集合,设置分析级别为2,慢操作的阈值为100ms:
use mydb
db.setProfilingLevel(0)
db.system.profile.drop()
db.setProfilingLevel(2,100)
在没有索引的情况下查询empno大于99999999的文档:
db.test.find({empno:{$gt:9999999}})
查询到一条结果,因此网络:
{ "_id" : ObjectId("523ad4d465fdfe550ae05d97"), "empno" : 10000000, "name" : 10000000, "address" : "AAAAAAAAAAAAAAAAAAAAAAAAAAA" }
在empno创建索引:
db.test.ensureIndex({empno:1})
重新查询empno大于99999999的文档得到的结果相同。
查询system.profile中存储的分析数据,按照发生的时间排序:
db.system.profile.find().limit(10).sort( { ts : 1 } ).pretty()
得到结果:
{
"op" : "query",
"ns" : "mydb.system.indexes",
"query" : {
"expireAfterSeconds" : {
"$exists" : true
}
},
"ntoreturn" : 0,
"ntoskip" : 0,
"nscanned" : 1,
"keyUpdates" : 0,
"numYield" : 0,
"lockStats" : {
"timeLockedMicros" : {
"r" : NumberLong(44),
"w" : NumberLong(0)
},
"timeAcquiringMicros" : {
"r" : NumberLong(2),
"w" : NumberLong(57806)
}
},
"nreturned" : 0,
"responseLength" : 20,
"millis" : 0,
"ts" : ISODate("2013-09-19T10:47:00.656Z"),
"client" : "0.0.0.0",
"allUsers" : [
{
"user" : "__system",
"userSource" : "local"
}
],
"user" : "__system@local"
}
{
"op" : "query",
"ns" : "mydb.test",
"query" : {
"empno" : {
"$gt" : 9999999
}
},
"ntoreturn" : 0,
"ntoskip" : 0,
"nscanned" : 10000000,
"keyUpdates" : 0,
"numYield" : 29,
"lockStats" : {
"timeLockedMicros" : {
"r" : NumberLong(59258536),
"w" : NumberLong(0)
},
"timeAcquiringMicros" : {
"r" : NumberLong(29469480),
"w" : NumberLong(6)
}
},
"nreturned" : 1,
"responseLength" : 112,
"millis" : 29861,
"ts" : ISODate("2013-09-19T10:47:21.476Z"),
"client" : "127.0.0.1",
"allUsers" : [ ],
"user" : ""
}
{
"op" : "query",
"ns" : "mydb.system.indexes",
"query" : {
"expireAfterSeconds" : {
"$exists" : true
}
},
"ntoreturn" : 0,
"ntoskip" : 0,
"nscanned" : 1,
"keyUpdates" : 0,
"numYield" : 0,
"lockStats" : {
"timeLockedMicros" : {
"r" : NumberLong(171),
"w" : NumberLong(0)
},
"timeAcquiringMicros" : {
"r" : NumberLong(8),
"w" : NumberLong(4)
}
},
"nreturned" : 0,
"responseLength" : 20,
"millis" : 0,
"ts" : ISODate("2013-09-19T10:48:00.661Z"),
"client" : "0.0.0.0",
"allUsers" : [
{
"user" : "__system",
"userSource" : "local"
}
],
"user" : "__system@local"
}
{
"op" : "query",
"ns" : "mydb.system.indexes",
"query" : {
"expireAfterSeconds" : {
"$exists" : true
}
},
"ntoreturn" : 0,
"ntoskip" : 0,
"nscanned" : 1,
"keyUpdates" : 0,
"numYield" : 0,
"lockStats" : {
"timeLockedMicros" : {
"r" : NumberLong(41),
"w" : NumberLong(0)
},
"timeAcquiringMicros" : {
"r" : NumberLong(3),
"w" : NumberLong(2)
}
},
"nreturned" : 0,
"responseLength" : 20,
"millis" : 0,
"ts" : ISODate("2013-09-19T10:49:00.677Z"),
"client" : "0.0.0.0",
"allUsers" : [
{
"user" : "__system",
"userSource" : "local"
}
],
"user" : "__system@local"
}
{
"op" : "insert",
"ns" : "mydb.system.indexes",
"query" : {
"v" : 1,
"key" : {
"empno" : 1
},
"ns" : "mydb.test",
"name" : "empno_1"
},
"ninserted" : 1,
"keyUpdates" : 0,
"numYield" : 0,
"lockStats" : {
"timeLockedMicros" : {
"r" : NumberLong(0),
"w" : NumberLong(145940925)
},
"timeAcquiringMicros" : {
"r" : NumberLong(0),
"w" : NumberLong(292871)
}
},
"millis" : 145977,
"ts" : ISODate("2013-09-19T10:51:37.246Z"),
"client" : "127.0.0.1",
"allUsers" : [ ],
"user" : ""
}
{
"op" : "query",
"ns" : "mydb.system.indexes",
"query" : {
"expireAfterSeconds" : {
"$exists" : true
}
},
"ntoreturn" : 0,
"ntoskip" : 0,
"nscanned" : 2,
"keyUpdates" : 0,
"numYield" : 1,
"lockStats" : {
"timeLockedMicros" : {
"r" : NumberLong(598801),
"w" : NumberLong(0)
},
"timeAcquiringMicros" : {
"r" : NumberLong(96316198),
"w" : NumberLong(13)
}
},
"nreturned" : 0,
"responseLength" : 20,
"millis" : 1107,
"ts" : ISODate("2013-09-19T10:51:38.122Z"),
"client" : "0.0.0.0",
"allUsers" : [
{
"user" : "__system",
"userSource" : "local"
}
],
"user" : "__system@local"
}
{
"op" : "query",
"ns" : "mydb.system.indexes",
"query" : {
"expireAfterSeconds" : {
"$exists" : true
}
},
"ntoreturn" : 0,
"ntoskip" : 0,
"nscanned" : 2,
"keyUpdates" : 0,
"numYield" : 0,
"lockStats" : {
"timeLockedMicros" : {
"r" : NumberLong(54),
"w" : NumberLong(0)
},
"timeAcquiringMicros" : {
"r" : NumberLong(3),
"w" : NumberLong(2)
}
},
"nreturned" : 0,
"responseLength" : 20,
"millis" : 0,
"ts" : ISODate("2013-09-19T10:52:38.260Z"),
"client" : "0.0.0.0",
"allUsers" : [
{
"user" : "__system",
"userSource" : "local"
}
],
"user" : "__system@local"
}
{
"op" : "query",
"ns" : "mydb.test",
"query" : {
"empno" : {
"$gt" : 9999999
}
},
"ntoreturn" : 0,
"ntoskip" : 0,
"nscanned" : 1,
"keyUpdates" : 0,
"numYield" : 0,
"lockStats" : {
"timeLockedMicros" : {
"r" : NumberLong(125810),
"w" : NumberLong(0)
},
"timeAcquiringMicros" : {
"r" : NumberLong(4),
"w" : NumberLong(6)
}
},
"nreturned" : 1,
"responseLength" : 112,
"millis" : 125,
"ts" : ISODate("2013-09-19T10:52:40.258Z"),
"client" : "127.0.0.1",
"allUsers" : [ ],
"user" : ""
}
我们看到执行的两次同样的查询和一次索引创建操作都在其中。
第一次查询的时间戳为2013-09-19T10:47:21.476Z,nscanned为1000万,nreturned为1 ,操作本身耗时29861ms。
上述查询是没有索引的情况下执行的,为优化查询,我们在empno上创建了索引。从system.profile查询结果可以看出创建索引的op为insert,操作的名字空间为mydb.system.indexes,创建的索引名称为empno_1。创建索引本身耗时145977ms。
我们第二次执行查询的时间戳为2013-09-19T10:52:40.258Z,nscanned为1,nreturned为1,操作本身耗时125ms。
从system.profile输出,我们可以看出有索引的查询要比没有索引的查询快很多。

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。

MySQLクエリのパフォーマンスが低いことの主な理由には、インデックスの使用、クエリオプティマイザーによる誤った実行計画の選択、不合理なテーブルデザイン、過剰なデータボリューム、ロック競争などがあります。 1.インデックスがゆっくりとクエリを引き起こし、インデックスを追加するとパフォーマンスが大幅に向上する可能性があります。 2。説明コマンドを使用してクエリ計画を分析し、オプティマイザーエラーを見つけます。 3.テーブル構造の再構築と結合条件を最適化すると、テーブルの設計上の問題が改善されます。 4.データボリュームが大きい場合、パーティション化とテーブル分割戦略が採用されます。 5.高い並行性環境では、トランザクションの最適化とロック戦略は、ロック競争を減らすことができます。

データベースの最適化では、クエリ要件に従ってインデックス作成戦略を選択する必要があります。1。クエリに複数の列が含まれ、条件の順序が固定されている場合、複合インデックスを使用します。 2。クエリに複数の列が含まれているが、条件の順序が修正されていない場合、複数の単一列インデックスを使用します。複合インデックスは、マルチコラムクエリの最適化に適していますが、単一列インデックスは単一列クエリに適しています。

MySQLスロークエリを最適化するには、slowquerylogとperformance_schemaを使用する必要があります。1。LowerQueryLogを有効にし、しきい値を設定して、スロークエリを記録します。 2。performance_schemaを使用してクエリの実行の詳細を分析し、パフォーマンスのボトルネックを見つけて最適化します。

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

メモ帳++7.3.1
使いやすく無料のコードエディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。
