Maison > Questions et réponses > le corps du texte
Ceci est un exemple de masque COCO RLE - https://pastebin.com/ZhE2en4C
Il s'agit du résultat de l'exécution de validation YOLOv8, extrait du fichier Predictions.json généré.
J'essaie de décoder cette chaîne en JavaScript et de la restituer sur le canevas. La chaîne encodée est valide car en python je peux faire ceci :
from pycocotools import mask as coco_mask from PIL import Image example_prediction = { "image_id": "102_jpg", "category_id": 0, "bbox": [153.106, 281.433, 302.518, 130.737], "score": 0.8483, "segmentation": { "size": [640, 640], "counts": "<RLE string here>" } } def rle_to_bitmap(rle): bitmap = coco_mask.decode(rle) return bitmap def show_bitmap(bitmap): img = Image.fromarray(bitmap.astype(np.uint8) * 255, mode='L') img.show() input("Press Enter to continue...") img.close() mask_bitmap = rle_to_bitmap(example_prediction["segmentation"]) show_bitmap(mask_bitmap)
Je peux voir le masque décodé.
Existe-t-il une bibliothèque qui peut être utilisée pour décoder la même chaîne en JavaScript et la convertir en Image
? J'ai essayé de fouiller dans le code source de pycocotools mais je n'ai pas pu.
P粉0249861502023-12-08 09:11:58
Vous pouvez dessiner le masque sur la toile puis exporter l'image si nécessaire.
Pour le dessin proprement dit, vous pouvez utiliser deux méthodes :
Voici des exemples des deux :
// Styling and scaling just for demo let wrapper = document.createElement("div") wrapper.style.cssText = ` transform-origin: left top; transform: scale(8); ` document.body.style.cssText = ` background-color: #121212; margin: 0; overflow: hidden; ` document.body.appendChild(wrapper) // Helpers function createCanvas(width, height) { let canvas = document.createElement("canvas") canvas.style.cssText = ` border: 1px solid white; display: block; float: left; image-rendering: pixelated; ` canvas.height = height canvas.width = width // Comment this line if you need only image sources wrapper.appendChild(canvas) return canvas } function randomColorRGBA() { return [ Math.round(Math.random() * 255), Math.round(Math.random() * 255), Math.round(Math.random() * 255), 255 ] } // Fast array flattening (faster than Array.proto.flat()) function flatten(arr) { const flattened = [] !(function flat(arr) { arr.forEach((el) => { if (Array.isArray(el)) flat(el) else flattened.push(el) }) })(arr) return flattened } // Decode from RLE to Binary Mask // (pass false to flat argument if you need 2d matrix output) function decodeCocoRLE([rows, cols], counts, flat = true) { let pixelPosition = 0, binaryMask if (flat) { binaryMask = Array(rows * cols).fill(0) } else { binaryMask = Array.from({length: rows}, (_) => Array(cols).fill(0)) } for (let i = 0, rleLength = counts.length; i < rleLength; i += 2) { let zeros = counts[i], ones = counts[i + 1] ?? 0 pixelPosition += zeros while (ones > 0) { const rowIndex = pixelPosition % rows, colIndex = (pixelPosition - rowIndex) / rows if (flat) { const arrayIndex = rowIndex * cols + colIndex binaryMask[arrayIndex] = 1 } else { binaryMask[rowIndex][colIndex] = 1 } pixelPosition++ ones-- } } if (!flat) { console.log("Result matrix:") binaryMask.forEach((row, i) => console.log(row.join(" "), `- row ${i}`)) } return binaryMask } // 1. Draw from binary mask function drawFromBinaryMask({size, counts}) { let fillColor = randomColorRGBA(), height = size[0], width = size[1] let canvas = createCanvas(width, height), canvasCtx = canvas.getContext("2d"), imgData = canvasCtx.getImageData(0, 0, width, height), pixelData = imgData.data // If you need matrix output (flat = false) // let maskFlattened = flatten(decodeCocoRLE(size, counts, false)), // maskLength = maskFlattened.length; // If not - it's better to use faster approach let maskFlattened = decodeCocoRLE(size, counts), maskLength = maskFlattened.length; for(let i = 0; i < maskLength; i++) { if (maskFlattened[i] === 1) { let pixelPosition = i * 4 pixelData[pixelPosition] = fillColor[0] pixelData[pixelPosition + 1] = fillColor[1] pixelData[pixelPosition + 2] = fillColor[2] pixelData[pixelPosition + 3] = fillColor[3] } } canvasCtx.putImageData(imgData, 0, 0) // If needed you can return data:image/png // to use it as an image.src return canvas.toDataURL() } // 2. Draw using virtual canvas function drawDirectlyFromRle({size: [rows, cols], counts}) { let fillColor = randomColorRGBA(), isOnesInterval = false, start = 0, end = 0 let realCanvas = createCanvas(cols, rows), realCtx = realCanvas.getContext("2d") let virtualCanvas = new OffscreenCanvas(rows, cols), virtualCtx = virtualCanvas.getContext("2d"), imgData = virtualCtx.getImageData(0, 0, rows, cols), pixelData = imgData.data counts.forEach((interval) => { end = start + interval * 4 if (isOnesInterval) { for (let i = start; i < end; i += 4) { pixelData[i] = fillColor[0] pixelData[i + 1] = fillColor[1] pixelData[i + 2] = fillColor[2] pixelData[i + 3] = fillColor[3] } } start = end isOnesInterval = !isOnesInterval }) virtualCtx.putImageData(imgData, 0, 0) realCtx.save() realCtx.scale(-1, 1) realCtx.rotate(90*Math.PI/180) realCtx.drawImage(virtualCanvas, 0, 0) realCtx.restore() // If needed you can return data:image/png // to use it as an image.src return realCanvas.toDataURL() } // Test RLE const exampleCocoRLE = { counts: [15, 1, 9, 1, 3, 3, 2, 1, 8, 1, 8, 1, 3, 3, 2, 1, 8, 1, 7, 1, 11], size: [9, 10] } // Draw on canvas let imageSrc1 = drawFromBinaryMask(exampleCocoRLE), imageSrc2 = drawDirectlyFromRle(exampleCocoRLE) console.log("Canvas 1 image (from binary):\n", imageSrc1) console.log("Canvas 2 image (from virtual):\n", imageSrc2) // Example of src usage let image1 = document.createElement("img"), image2 = document.createElement("img"), imageStyle = ` display: block; float: left; border: 1px solid lime; image-rendering: pixelated; ` // demo styling image1.style.cssText = imageStyle image2.style.cssText = imageStyle image1.onload = () => { wrapper.appendChild(image1) } image2.onload = () => { wrapper.appendChild(image2) } image1.src = imageSrc1 image2.src = imageSrc2