recherche

Maison  >  Questions et réponses  >  le corps du texte

Data Mining - Comment utiliser python pour implémenter l'algorithme dans « Analyse du problème de maximisation de l'influence de plusieurs réseaux sociaux » ?

En tant que novice en Python, mon instructeur m'a demandé d'utiliser Python pour implémenter l'algorithme dans l'article. J'étais confus quant aux points techniques requis et à la manière d'implémenter l'algorithme. Actuellement, j'ai suivi le didacticiel python du professeur Liao en python et je lis actuellement la documentation networkx.
J'espère que vous pourrez m'aider à résoudre les problèmes suivants :
1. Points techniques nécessaires à la mise en œuvre de l'algorithme
2 Comment gérer ce type de papier
3.

Adresse papier : http://cjc.ict.ac.cn/online/o...

PHP中文网PHP中文网2748 Il y a quelques jours775

répondre à tous(1)je répondrai

  • 黄舟

    黄舟2017-05-18 11:00:59

    Après une semaine, il est initialement terminé. Le code supplémentaire n'est pas assez beau et inefficace. Merci de me donner quelques conseils

    .
    # _*_ coding:utf-8 _*_
    # ==================================================================================
    #
    #       Description:  Influence Maximization on Multiple Social Networks
    #
    # ==================================================================================
    import matplotlib.pyplot as plt  
    import networkx as nx
    import heapq
    
    
    #总图
    G = nx.DiGraph()
    
    def load_graph(file):
        '''
        加载文件为列表格式,并得到G,画出图结构  
        '''
        
        #将总列表设成全局格式
        global  gllist
        
        #迭代文件中每个元素
        with open(file) as f:
            lines = f.readlines()
        mylist = [line.strip().split() for line in lines]
        
        gllist = []
        #将字符串型转换为整型
        for i in mylist:
            gllist.append(i[:-2]+map(lambda x: float(x), i[-2:]))
        print '初始全局列表:'
        print gllist
    
        drawlist=[]
        #提取二维列表mylist每行前三个元素,赋给新的列表drawlist
        for i in range(len(mylist)):
            drawlist.append([])
            for j in range(3):
                drawlist[i].append(mylist[i][j])
        #将列表drawlist加载为有向加权图
        G.add_weighted_edges_from(drawlist)
        nx.draw(G, with_labels=True, width=1, node_color='y', edge_color='b')
        plt.show()
        print 'G图中所有节点:',G.nodes()
        print 'G图中所有边:',G.edges()
        print '\n'
    
    
    def get_self_node(gllist, target=None):
        '''
        获取目标节点的自传播节点,返回selflist并包含目标节点
        '''
        #初始化自传播节点列表
        selflist = [target]
        
        #存放已传播节点列表
        haslist = []
        
        flag = 0
        
        while (flag != 0):       
            flag = 0       
            for target in selflist:
                if target not in haslist:
                    for i in range(len(gllist)):
                        #判断二维列表中,每行第三个元素是否为1,若为1,则为自传播节点
                        if ((gllist[i][0] == target)or(gllist[i][1]==target))and(gllist[i][3]==1.0):
                            if gllist[i][0] == target:
                                if gllist[i][1] not in haslist:
                                    selflist.append(gllist[i][1])
                                    haslist.append(gllist[i][1])
                                    flag += 1
                            else:
                                if gllist[i][0] not in haslist:
                                    selflist.append(gllist[i][0])
                                    haslist.append(gllist[i][0])
                                    flag += 1
                    #去除重复元素
                    haslist = set(haslist)        
                selflist = set(selflist)    
    
        #去除重复元素
        selflist = set(selflist)
        return selflist
    
    
    def longest_path(gllist,source=None,target=None):
        '''
        获取起始点到实体的最大路径集合,返回为longestpath列表
        '''
        longestpath = []
        newlist = []
        for i in range(len(gllist)):
            newlist.append([])
            for j in range(3):
                newlist[i].append(gllist[i][j])
        #构建图结构
        G1 = nx.DiGraph()
        #添加带权有向边
        G1.add_weighted_edges_from(newlist)
        #获取目标节点的所有自传播街边,并存入selflist中
        selflist = get_self_node(gllist, target)
        max_path = 0
        val_path = 1
        #获取初始节点到目标节点及目标节点的自传播节点的最大路径
        for v in selflist:
            if v != source:
                #遍历两点之间所有路径,并进行比对
                for path in nx.all_simple_paths(G1,source=source,target=v):
                    #判断路径后两个元素是否为相同实体(如:b1->b2)
                    if is_self_transmit_node(path[-2], v) == 0: 
                        for i in range(0, len(path)-1):
                            val_path *= G1.get_edge_data(path[i], path[i+1])['weight']
                        if max_path < val_path:
                            max_path = val_path
                        val_path = 1
            #若目标节点为起始节点则直接跳出
            else: continue  ############ 有待商榷 ##############
            longestpath.append(max_path)
        #返回初始节点到实体的最大路径
        return longestpath
    
    
    def is_self_transmit_node(u, v):
        '''
        判断目标节点不为起始节点的自传播点
        '''
        flag = 0
        #获得起始节点的所有自传播点
        selflist = get_self_node(gllist, v)
        for x in selflist:
            if u == x:
                flag = 1
        return flag
    
    
    def single_strong_infl(longestpath):
        '''
        计算起始点到实体的传播概率(影响强度),返回影响强度stronginfl
        '''
        temp = 1
        for x in longestpath:
            temp *= 1-x
        stronginfl = 1-temp
        return stronginfl
    
    
    def all_strong_infl(G):
        '''
        获得每个节点对实体的影响概率
        '''
        allstrong = [] #初始化所有节点的加权影响范围列表
        gnodes = [] #初始化节点列表
        tempnodes = [] #初始化临时节点列表
        
        gnodes = G.nodes()
        
        for u in gnodes:        
            strong = 0 #存储初始节点对每个实体的影响范围加权,初始化为0       
            #重置临时节点列表
            tempnodes = G.nodes()
            for v in tempnodes:
                #非自身节点
                if u != v:     
                    #判断目标节点不为起始节点的自传播点
                    if is_self_transmit_node(v, u) == 0:
                        #获取起始节点到实体间最大加权路径,并存入longestpath
                        longestpath = longest_path(gllist, u, v)
                        
                        #去除已遍历目标节点的所有自传播节点
                        renode = get_self_node(gllist, v)
                        for x in renode:
                            if x != v:
                                tempnodes.remove(x)
    
                        #计算起始节点到实体间传播概率(影响强度)
                        stronginfl = single_strong_infl(longestpath)
                        strong += stronginfl 
    
            #添加单个节点到所有实体的加权影响范围      
            allstrong.append([u, round(strong, 2)])
        
        #返回每个节点到所有实体的加权影响范围
        return allstrong
        #output allstrong : [['a1', 2.48], ['a2', 1.6880000000000002], ['b1', 0.7], ['b2', 0], ['c1', 0], ['d2', 0.6]]
    
    
    def uS_e_uppergain(u, ev, S):
        '''
        获取节点u在集合S的基础上对实体ev的影响增益, 传入候选节点,上界gain(u|S, ev)
        '''
        
        #获取目前实体的所有自传播节点
        selflist = get_self_node(gllist, ev)
        stronglist = []
        #遍历自传遍节点
        for v in selflist:
            '''
            判断节点v是否存在种子集合S中
            其中v为单个节点,如v(ev, Gi)
            S为种子节点集合,如['a1','a2','b1','b2','c1','d2']
            '''
            if v in S:
                ppSv = 1
            else:
                longestpath = []
                #遍历种子集合
                for s in S:
    
                    #初始化路径权值与最大路径权值
                    val_path = 1
                    max_path = 0
    
                    #遍历两点之间所有路径,并进行比对
                    for path in nx.all_simple_paths(G,source=s,target=v):
                        #判断路径后两个元素是否为相同实体(如:b1->b2)
                        if is_self_transmit_node(path[-2], v) == 0: 
                            for i in range(0, len(path)-1):
                                val_path *= G.get_edge_data(path[i], path[i+1])['weight']
                            if max_path < val_path:
                                max_path = val_path
                            #重置路径权值为1
                            val_path = 1
                    #将最大加权路径存入longestpath列表
                    longestpath.append(max_path)
                #得到上界pp(S,v)的影响概率,上界pp(S,v)
                ppSv = single_strong_infl(longestpath)
    
            stronglist.append(ppSv)
        #得到上界pp(S,ev)的影响概率,上界pp(S,ev)
        ppSev = single_strong_infl(stronglist)
        
        #获取pp(u,ev)
        ppuev = single_strong_infl(longest_path(gllist, u, ev))
        
        #计算上界gain(u|S,ev)
        uSevgain = (1 - ppSev) * ppuev   
        return uSevgain                    
                
    
    def uppergain(u, emu, ems, S):
        '''
        在已有种子集合S的基础上,求得节点u的影响增益上界,
        其中传进参数ems为二维列表,如[['a1',2.48],['a2',1.688]],S则为['a1','a2']
        '''
        uSgain = 0.0
        #遍历emu得到列表形式,得到如['a1',2.48]形式
        for ev in emu:
            #判断节点是否存在种子集合中
            if ev[0] in S:
                uSgain += uS_e_uppergain(u, ev[0], S)
            else:
                uSgain += ev[1] 
    
        #返回上界gain(u|S)    
        return uSgain
      
    
    def bound_base_imms(G, k):
        '''
        完全使用影响增益上界的方式选择top-k个种子节点的过程
        '''
        #初始化emu,H,初始化ems=空集,S=空集 
    
        Htemp = []
        Htemp = all_strong_infl(G)
        H = []
        #遍历Htemp=[['a1',2.48],['a2',1.688]],得到如['a1',2.48]形式
        for x in Htemp:
            #逐个获取二维列表中每一行,形式为['a1',2.48,0]
            H.append([x[0],x[1],0])
    
        emu = []
        emu = all_strong_infl(G)
        
        ems = []
        S = []
        
        for i in range(k):
            
            #提取堆顶元素,tnode的形式为['a1',2.48,0]
            tnode = heapq.nlargest(1, H, key=lambda x: x[1])
            #将[['b2', 3.1, 0]]格式改为['b2', 3.1, 0]格式
            tnode = sum(tnode, [])
    
            while (tnode[2] != i):
                gain = 0.0
                #获取节点u的影响增益上界
                gain = uppergain(tnode, emu, ems, S)
                #赋值影响范围
                tnode[1] = gain
                #修改status
                tnode[2] = i
                
                #对堆进行排序
                H = heapq.nlargest(len(H), H, key=lambda x: x[1])
    
            #获取堆顶元素
            tnode = heapq.nlargest(1, H, key=lambda x: x[1])
            tnode = sum(tnode, [])
    
            #添加node到种子集合
            S.append([tnode[0]])
            #更新ems,添加新节点及节点对每个实体的影响范围加权
            ems.append([tnode[0], tnode[1]])
    
            #删除堆顶元素
            H.remove(tnode)
        print ems
        return sum(S, [])
    
    
    if __name__=='__main__':
    
        #大小为k的种子集合S
        k = 60
        
        #加载文件数据,得到图G和初始列表gllist
        load_graph('test.txt')
        
        #完全使用影响增益上界值的计算过程函数,打印种子集合S
        print '种子集合:',bound_base_imms(G, k)

    test.txt
    a1 b1 0.2 0
    a1 c1 0.8 0
    a2 b2 0.4 0
    a2 d2 1 0
    b1 c1 0.7 0
    c2 a2 0.8 0
    d2 b2 0.6 0
    a1 a2 1 1
    a2 1 0,1 1
    ....
    a1 l1 0,5 0
    a1 m1 0,5 0
    a1 q1 0,5 0
    a1 v1 0,5 0
    a1 z1 0,5 0
    a1 s1 0,5 0
    a1 w1 0,5 0
    a1 u1 0,5 0
    les deux premiers répertorié comme Entités de propagation, la troisième colonne représente la probabilité de propagation entre entités, la dernière colonne représente 0 pour la propagation dans le même réseau et 1 représente l'auto-propagation entre réseaux.

    L'étape suivante consiste à optimiser :
    1. Utilisez un modèle de cascade indépendant et définissez le seuil
    2. Remplacez le chemin maximum par le chemin le plus court et utilisez le journal

    répondre
    0
  • Annulerrépondre