Maison >développement back-end >Tutoriel Python >Python中的生成器和yield详细介绍
列表推导与生成器表达式
当我们创建了一个列表的时候,就创建了一个可以迭代的对象:
代码如下:
>>> squares=[n*n for n in range(3)]
>>> for i in squares:
print i
0
1
4
而生成器表达式不同,它执行的计算与列表包含相同,但会迭代的生成结果。它的语法与列表推导一样,只是要用小括号来代替中括号:
代码如下:
>>> squares=(n*n for n in range(3))
>>> for i in squares:
print i
0
1
4
那么,还有没有其它方法来产生生成器呢?
例子:斐波那契数列
例如有个需求,要生成斐波那契数列的前10位,我们可以这样写:
代码如下:
def fib(n):
result=[]
a=1
b=1
result.append(a)
for i in range(n-1):
a,b=b,a+b
result.append(a)
return result
if __name__=='__main__':
print fib(10)
这样,需求就变成了:写一个可以生成可迭代对象的函数,或者说,不要让函数一次返回全部的值,而是一次返回一个值。
这好像与我们的常识相违背,当我们调用一个普通的Python函数时,一般是从函数的第一行代码开始执行,结束于return语句、异常或者函数结束(可以看作隐式的返回None):
代码如下:
def fib(n):
a=1
b=1
for i in range(n-1):
a,b=b,a+b
return a
if __name__=='__main__':
print fib(10)
>>>
1 #返回第一个值时就卡住了
代码如下:
def fib(n):
a=1
yield a
b=1
for i in range(n-1):
a,b=b,a+b
yield a
if __name__=='__main__':
for i in fib(10):
print i
>>>
1
1
2
3
5
8
13
21
34
生成器Generator
python中生成器的定义很简单,使用了yield关键字的函数就可以称之为生成器,它生成一个值的序列:
代码如下:
def countdown(n):
while n>0:
yield n
n-=1
if __name__=='__main__':
for i in countdown(10):
print i
代码如下:
>>> c=countdown(10)
>>> c.next()
10
>>> c.next()
9
next()不能无限执行,当迭代结束时,会抛出StopIteration异常。迭代未结束时,如果你想结束生成器,可以使用close()方法。
代码如下:
>>> c.next()
1
>>> c.next()
StopIteration
>>> c=countdown(10)
>>> c.next()
10
>>> c.close()
>>> c.next()
StopIteration
yield语句还有更给力的功能,作为一个语句出现在赋值运算符的右边,接受一个值,或同时生成一个值并接受一个值。
代码如下:
def recv():
print 'Ready'
while True:
n=yield
print 'Go %s'%n
>>> c=recv()
>>> c.next()
Ready
>>> c.send(1)
Go 1
>>> c.send(2)
Go 2
协程的运行一般是无限期的,使用方法close()可以显式的关闭它。
如果yield表达式中提供了值,协程可以使用yield语句同时接收和发出返回值。
代码如下:
def split_line():
print 'ready to split'
result=None
while True:
line=yield result
result=line.split()
>>> s=split_line()
>>> s.next()
ready to split
>>> s.send('1 2 3')
['1', '2', '3']
>>> s.send('a b c')
['a', 'b', 'c']
如果你想用send()方法来开启协程的执行,必须先send一个None值,因为这时候是没有yield语句来接受值的,否则就会抛出异常。
代码如下:
>>> s=split_line()
>>> s.send('1 2 3')
TypeError: can't send non-None value to a just-started generator
>>> s=split_line()
>>> s.send(None)
ready to split
使用生成器与协程
乍看之下,如何使用生成器和协程解决实际问题似乎并不明显。但在解决系统、网络和分布式计算方面的某些问题时,生成器和协程特别有用。实际上,yield已经成为Python最强大的关键字之一。
比如,要建立一个处理文件的管道:
代码如下:
import os,sys
def default_next(func):
def start(*args,**kwargs):
f=func(*args,**kwargs)
f.next()
return f
return start
@default_next
def find_files(target):
topdir=yield
while True:
for path,dirname,filelist in os.walk(topdir):
for filename in filelist:
target.send(os.path.join(path,filename))
@default_next
def opener(target):
while True:
name=yield
f=open(name)
target.send(f)
@default_next
def catch(target):
while True:
f=yield
for line in f:
target.send(line)
@default_next
def printer():
while True:
line=yield
print line
代码如下:
finder=find_files(opener(catch(printer())))
finder.send(toppath)
总之,生成器的功能非常强大。协程可以用于实现某种形式的并发。在某些类型的应用程序中,可以用一个任务调度器和一些生成器或协程实现协作式用户空间多线程,即greenlet。yield的威力将在协程,协同式多任务处理(cooperative multitasking),以及异步IO中得到真正的体现。