


Auteur | Wang Hao
Chonglou
En parlant de 21 La technologie Internet du siècle, sauf Python/Rust/Go Attendez une minute La naissance d'une série de nouveaux langages de programmation et le développement vigoureux des technologies de recherche d'informations sont également un point culminant. Le premier modèle commercial purement technologique sur Internet était la technologie des moteurs de recherche représentée par Google et Baidu. Cependant, ce à quoi tout le monde ne s’attend pas, c’est que le système de recommandation est né il y a longtemps. Dès 1992 , le premier système de recommandation de l'histoire de l'humanité a été publié sous la forme d'un article. À cette époque, Google et Baidu n'étaient pas encore nés.
n'est pas considéré comme une nécessité rigide comme les moteurs de recherche, et de nombreuses licornes sont rapidement nées. Les entreprises technologiques ayant des systèmes de recommandation comme technologie de base n'apparaîtront qu'avec la montée en puissance de Toutiao et Douyin à l'ère 2010 . Il ne fait aucun doute que Toutiao et Douyin sont devenues les entreprises représentatives les plus performantes dans les systèmes de recommandation. Si le moteur de recherche de technologie de recherche d'informations de première génération a été préempté par les Américains, alors le système de recommandation de technologie de recherche d'informations de deuxième génération est fermement contrôlé par les Chinois. Et nous rencontrons maintenant la troisième génération de technologie de recherche d'informations —— recherche d'informations basée sur de grands modèles de langage. À l’heure actuelle, les premiers acteurs sont les pays européens et américains, mais la Chine et les États-Unis avancent actuellement ensemble.
Ces dernières années, la conférence faisant autorité dans le domaine des systèmes de recommandation RecSys a fréquemment décerné le prix du meilleur article à Sequential Recommendation (Sequential Recommendation). Cela montre que ce domaine accorde de plus en plus d’attention aux applications verticales. Il existe une application verticale du système de recommandation qui est si importante, mais elle n'a pas fait d'énormes vagues jusqu'à présent. Ce domaine est la recommandation basée sur des scénarios (Context-aware Recommendation), appelée CARS. Nous voyons occasionnellement des WORKSHOP de CARS , mais ces Workshop ne produisent pas plus de 10 papiers chaque année, ce qui est une poignée.
VOITURES A quoi peut-il servir ? Tout d'abord, CARS est déjà utilisé par des entreprises de restauration rapide comme Burger King. Il peut également recommander de la musique aux utilisateurs en fonction de la scène pendant la conduite de la voiture. De plus, on peut y réfléchir, est-il possible pour nous de recommander des plans de voyage aux utilisateurs en fonction des conditions météorologiques ? Ou recommander des repas aux utilisateurs en fonction de leur condition physique ? En fait, tant que nous laissons libre cours à notre imagination, nous pouvons toujours trouver différentes applications pratiques pour CARS .
Cependant, la question se pose, puisque CARS est si largement utilisé, pourquoi si peu de gens publient des articles ? La raison est simple, car il n'existe presque aucun ensemble de données publiques disponible pour CARS . Actuellement, le meilleur ensemble de données publiques de CARS est l'ensemble de données LDOS-CoMoDa de Slovénie. En dehors de cela, il est difficile de trouver d’autres ensembles de données. LDOS-CoMoDa fournit des données sur la scène des utilisateurs lorsqu'ils regardent des films sous forme d'enquêtes, permettant ainsi aux chercheurs de s'engager dans des recherches CARS . Le moment où les données doivent être divulguées se situe entre 2012 et 2013 , mais actuellement, très peu de gens connaissent cette collecte de données.
Retour aux affaires, cet article présente principalement l'algorithme MatMat / MovieMat et l'algorithme PowerMat . Ces algorithmes sont des outils puissants pour résoudre le problème des CARS . Voyons d'abord comment MatMat définit le problème CARS : Nous redéfinissons d'abord la matrice d'évaluation des utilisateurs, et nous remplaçons chaque valeur de notation de la matrice d'évaluation des utilisateurs par une matrice carrée. Les éléments diagonaux de la matrice carrée sont les valeurs de score d'origine et les éléments hors diagonale sont des informations sur la scène.
Nous définissons ci-dessous la fonction de perte de l'algorithme MatMat , qui modifie la fonction de perte de décomposition matricielle classique et a la forme suivante :
où U et V sont toutes deux des matrices. De cette façon, nous modifions le produit scalaire vectoriel dans la factorisation matricielle d’origine. Transformez la multiplication de points vectoriels en multiplication matricielle. Prenons l'exemple suivant :
Nous avons effectué une expérience de comparaison des performances sur MovieLens Small Dataset et avons obtenu les résultats suivants :
Comme vous pouvez le voir, MatMat L'effet de l'algorithme est meilleur que l'algorithme de décomposition matricielle classique. Vérifions à nouveau l'équité du système de recommandation :
On constate que MatMat fonctionne toujours bien en termes d'indicateurs d'équité. Le processus de résolution de MatMat est relativement compliqué. Même l'auteur qui a inventé l'algorithme n'a pas écrit le processus de dérivation dans l'article. Mais comme le dit le proverbe, si vous apprenez bien l’algèbre linéaire, vous n’aurez pas peur de voyager partout dans le monde. Je pense que les lecteurs intelligents seront capables de dériver les formules pertinentes et de mettre en œuvre cet algorithme. MatMat L'adresse originale de l'article sur l'algorithme se trouve au lien suivant : https://www.php.cn/link/9b8c60725a0193e78368bf8b84c37fb2 . Cet article est le prix du meilleur rapport papier de la Conférence académique internationale IEEE ICISCAE 2021 . L'algorithme
MatMat est appliqué dans le domaine de la recommandation de films basée sur des scènes. L'instance de film de cet algorithme est nommée MovieMat. La matrice de notation de MovieMat est définie comme suit :
L'auteur a ensuite mené une expérience comparative :
sur le LDOS-CoMoDa ensemble de données, MovieMat atteint des performances bien supérieures à celles de la décomposition matricielle classique. Jetons un coup d'œil aux résultats de l'évaluation de l'équité :
En termes d'équité, la décomposition matricielle classique a obtenu de meilleurs résultats que MovieMat . L'article original de MovieMat peut être trouvé sur le lien suivant : https://www.php.cn/link/f4ec6380c50a68a7c35d109bec48aebf .
Nous rencontrons parfois de tels problèmes. Que devons-nous faire lorsque nous arrivons à un nouvel emplacement et que nous disposons uniquement de données de scène mais pas de données d'évaluation des utilisateurs ? Peu importe, Ratidar Technologies LLC (Beijing Daping Qizhi Network Technology Co., Ltd. ) a inventé l'algorithme CARS basé sur l'apprentissage zéro tir - PowerMat. L'article original de PowerMat peut être trouvé sur le lien suivant : https://www.php.cn/link/1514f187930072575629709336826443 . L'inventeur de
PowerMat a emprunté MAP et DotMat et a défini la fonction MAP suivante : où
U
V est le vecteur de caractéristiques de l'élément, R est la valeur d'évaluation de l'utilisateur et C est la variable de scène. Concrètement, on obtient la formule suivante : En utilisant la descente de gradient stochastique pour résoudre ce problème, nous obtenons la formule suivante : Grâce à l'observation, nous avons constaté qu'il n'y a pas de variables liées aux données d'entrée dans cet ensemble de formules, donc PowerMat est un algorithme d'apprentissage zéro-shot lié uniquement aux scénarios. Cet algorithme peut être appliqué dans les scénarios suivants : les touristes prévoient de se rendre à un certain endroit, mais n'y sont jamais allés, ils ne disposent donc que de données de scène telles que la météo. Nous pouvons utiliser PowerMat pour recommander des attractions à enregistrer. touristes, etc Voici les données de comparaison entre PowerMat et d'autres algorithmes : À travers cette image, nous trouvons PowerMat et MovieMat flag Les tambours sont calmes, non Ils sont comparables, et les résultats sont meilleurs que l'algorithme de décomposition matricielle classique. L'image ci-dessous montre que même en termes d'équité index , PowerMat fonctionne toujours très bien : Grâce à des expériences comparatives, nous avons constaté que PowerMat est excellent VOITURES algorithme. Les ingénieurs de données Internet disent souvent que les données sont avant tout. Et autour de l’ère 2010 , il y avait une forte tendance sur Internet qui était haussière sur les données et baissière sur les algorithmes. CARS en est un excellent exemple. Parce que la grande majorité des gens n’ont pas accès aux données pertinentes, le développement de ce domaine a été considérablement restreint. Grâce aux chercheurs slovènes qui ont rendu publique la collecte de données LDOS-CoMoDa , nous avons l'opportunité de développer ce domaine. Nous espérons également que de plus en plus de gens s'intéressent aux voitures, à l'atterrissage des voitures et au financement des voitures ...
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

DVWA
Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

Navigateur d'examen sécurisé
Safe Exam Browser est un environnement de navigation sécurisé permettant de passer des examens en ligne en toute sécurité. Ce logiciel transforme n'importe quel ordinateur en poste de travail sécurisé. Il contrôle l'accès à n'importe quel utilitaire et empêche les étudiants d'utiliser des ressources non autorisées.

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.

mPDF
mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),
