


Apprentissage automatique : les 19 meilleurs projets d'apprentissage par renforcement (RL) sur Github
L'apprentissage par renforcement (RL) est une méthode d'apprentissage automatique qui apprend par essais et erreurs de la part de l'agent. Les algorithmes d’apprentissage par renforcement sont utilisés dans de nombreux domaines, tels que les jeux, la robotique et la finance.
L'objectif de RL est de découvrir une stratégie qui maximise les rendements attendus à long terme. Les algorithmes d’apprentissage par renforcement sont généralement divisés en deux catégories : basés sur un modèle et sans modèle. Les algorithmes basés sur des modèles utilisent des modèles environnementaux pour planifier des voies d'action optimales. Cette approche repose sur une modélisation précise de l'environnement, puis sur l'utilisation du modèle pour prédire les résultats de différentes actions. En revanche, les algorithmes sans modèle apprennent directement des interactions avec l’environnement et ne nécessitent pas de modélisation explicite de l’environnement. Cette méthode est plus adaptée aux situations où le modèle d’environnement est difficile à obtenir ou imprécis. En réalité, en revanche, les algorithmes d’apprentissage par renforcement sans modèle ne nécessitent pas de modélisation explicite de l’environnement, mais apprennent par une expérience continue. Les algorithmes RL populaires tels que Q-learning et SARSA sont conçus sur la base de cette idée.
Pourquoi l’apprentissage par renforcement est-il important ?
15. Deep Reinforcement Learning From Demonstration : Une boîte à outils pour former les agents en présence de démonstrations humaines ou de récompenses.
URL du code source du projet : https://ieeexplore.ieee.org/document/9705112
16 Agents TensorFlow : une bibliothèque pour former des agents d'apprentissage par renforcement à l'aide de TensorFlow.
URL du code source du projet : https://www.tensorflow.org/agents
17 Environnement d'apprentissage PyGame : une boîte à outils pour développer et évaluer des agents d'IA dans le cadre du jeu d'arcade classique.
URL du code source du projet : https://github.com/ntasfi/PyGame-Learning-Environment
18 : Un projet open source qui permet aux développeurs d'utiliser Minecraft comme plateforme de recherche en intelligence artificielle.
URL du code source du projet : https://github.com/microsoft/malmo
19 : une boîte à outils pour développer, évaluer et tester des véhicules autonomes dans un environnement de simulation.
URL du code source du projet : https://microsoft.github.io/AirSim/
Comment démarrer vous-même le développement RL ?
Si vous souhaitez développer vos propres applications RL, le meilleur point de départ est de télécharger un kit de développement logiciel (SDK). Le SDK vous fournit tous les outils et bibliothèques dont vous avez besoin pour développer des applications RL.
Une fois que vous disposez d'un SDK, vous pouvez choisir parmi un certain nombre de langages et de frameworks de programmation différents. Par exemple, si vous souhaitez développer le moteur Unity, vous pouvez utiliser le SDK Unity.
Si vous souhaitez développer Unreal Engine, vous pouvez utiliser le SDK Unreal Engine 4. Une fois que vous avez sélectionné une plateforme et une langue, vous pouvez commencer à créer votre application RL. De plus, vous pouvez trouver des didacticiels et des cours en ligne pour vous aider à démarrer avec le développement RL.
Enfin, il est important de se rappeler que développer des applications RL demande de la pratique et de la patience – mais avec suffisamment de dévouement et de travail acharné, vous pouvez devenir un expert dans le domaine.
De plus, si vous recherchez des ressources pour en savoir plus sur l'apprentissage par renforcement, vous pouvez trouver des tonnes de tutoriels et de cours en ligne.
De plus, il existe de nombreux livres et documents de recherche traitant des dernières avancées en matière d'algorithmes et de techniques d'apprentissage par renforcement. De plus, assister à des conférences ou à des ateliers est un excellent moyen de s'exposer à l'apprentissage par renforcement
Conclusion
L'apprentissage par renforcement est un domaine passionnant et en croissance rapide avec des applications dans une variété d'industries. Cela nous permet de développer des agents intelligents capables d’apprendre de leur environnement et de prendre des décisions basées sur des données.
Pour démarrer le développement RL, vous devez télécharger le SDK et choisir le langage et le framework qui conviennent le mieux à votre projet.
De plus, vous devez prendre le temps de comprendre les bases du RL et de pratiquer le développement d'agents. Enfin, il existe de nombreuses ressources en ligne pour vous aider à en savoir plus sur RL. Avec suffisamment de dévouement et de travail acharné, vous pouvez devenir un expert dans votre domaine.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Olympiccoder-7b de Hugging Face: un puissant modèle de raisonnement de code open source La race pour développer des modèles de langues axés sur le code supérieurs s'intensifie, et Hugging Face a rejoint la compétition avec un formidable concurrent: Olympiccoder-7b, un produit

Combien d'entre vous ont souhaité que l'IA pourrait faire plus que de répondre aux questions? Je sais que je l'ai, et ces derniers temps, je suis étonné de la façon dont il se transforme. Les chatbots IA ne visent plus seulement à discuter, ils sont à la création, à la recherche

Alors que Smart IA commence à être intégré à tous les niveaux de plates-formes et d'applications logicielles d'entreprise (nous devons souligner qu'il existe à la fois des outils de base puissants et des outils de simulation moins fiables), nous avons besoin d'un nouvel ensemble de capacités d'infrastructure pour gérer ces agents. Camunda, une société d'orchestration de processus basée à Berlin, en Allemagne, estime qu'elle peut aider SMART IA à jouer son rôle dû et à s'aligner sur des objectifs commerciaux et des règles précis dans le nouveau lieu de travail numérique. La société offre actuellement des capacités d'orchestration intelligentes conçues pour aider les organisations à modéliser, déployer et gérer les agents d'IA. Du point de vue de l'ingénierie logicielle pratique, qu'est-ce que cela signifie? L'intégration des processus de certitude et non déterministes La société a déclaré que la clé est de permettre aux utilisateurs (généralement des scientifiques des données, des logiciels)

Assistant Google Cloud Next '25, je tenais à voir comment Google distinguerait ses offres de l'IA. Les annonces récentes concernant Agentspace (discutées ici) et la suite d'expérience client (discutée ici) étaient prometteuses, mettant l'accent sur les affaires

Sélection du modèle d'introduction multilingue optimal pour votre système de génération augmentée de récupération (RAG) Dans le monde interconnecté d'aujourd'hui, la construction de systèmes d'IA multilingues efficaces est primordial. Les modèles d'incorporation multilingues robustes sont cruciaux pour RE

Launchage Austin Robotaxi de Tesla: un examen plus approfondi des affirmations de Musk Elon Musk a récemment annoncé le prochain lancement de Robotaxi de Tesla à Austin, au Texas, déployant initialement une petite flotte de 10 à 20 véhicules pour des raisons de sécurité, avec des plans pour une expansion rapide. H

La façon dont l'intelligence artificielle est appliquée peut être inattendue. Initialement, beaucoup d'entre nous pourraient penser qu'il était principalement utilisé pour les tâches créatives et techniques, telles que l'écriture de code et la création de contenu. Cependant, une récente enquête rapportée par Harvard Business Review montre que ce n'est pas le cas. La plupart des utilisateurs recherchent l'intelligence artificielle non seulement pour le travail, mais pour le soutien, l'organisation et même l'amitié! Le rapport indique que le premier des cas de demande de l'IA est le traitement et la compagnie. Cela montre que sa disponibilité 24h / 24 et 7j / 7 et la capacité de fournir des conseils et des commentaires anonymes et honnêtes sont d'une grande valeur. D'un autre côté, les tâches marketing (telles que la rédaction d'un blog, la création de publications sur les réseaux sociaux ou la copie publicitaire) se classent beaucoup plus bas sur la liste des utilisations populaires. Pourquoi est-ce? Voyons les résultats de la recherche et comment il continue d'être

La montée des agents de l'IA transforme le paysage commercial. Par rapport à la révolution du cloud, l'impact des agents de l'IA devrait être exponentiellement plus grand, promettant de révolutionner le travail des connaissances. La capacité de simuler la décision humaine


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

Version crackée d'EditPlus en chinois
Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.