


Présentation
La science des données émerge de jour en jour et a été largement utilisée dans diverses industries. pandas est une bibliothèque open sourcepour la manipulation et la modélisation de données, ce qui en fait un outil précieux pour les data scientists. Dans cet article, nous explorerons comment utiliser Pandas pour l'exploration et la modélisation de données.
Exploration des données
L'exploration des données est une première étape cruciale dans le processus de science des données, qui nous permet d'avoir une compréhension intuitive des données. Grâce à Pandas, nous pouvons charger les données et visualiser leur contenu.
import numpy as np import numpy as np import matplotlib.pyplot as plts data = pd.read_csv("data.csv")
La sortie tabulaire fournit une perspective sur les données, tandis que les graphiques nous aident à visualiserles données pour rechercher des tendances et des valeurs aberrantes.
data.head() data.hist() plt.show()
Prétraitement des données
Avant de modéliser les données, un prétraitement des données est généralement nécessaire pour garantir l'intégrité et la cohérence des données. Cela peut impliquer de nettoyer les valeurs manquantes, de standardiser les fonctionnalités ou de convertir des données catégorielles en une forme numérique pouvant être entraînée sur le modèle.
data.dropna(inplace=True) data = (data - data.min()) / (data.max() - data.min()) data["cateGory"] = data["category].astype("category")
Modélisation des données
Une fois les données prêtes, nous pouvons commencer la modélisation. Pandas prend en charge diverses bibliothèques pour la modélisation statistique courante, telle que la régression linéaire, la régression logistique et les arbres de décision.
from sklearn.linear_model import LoGISticRegression model = LogisticRegression() model.fit(data[["feature1", "feature2"]], data["target"])
Évaluation du modèle
Après avoir entraîné le modèle, l'étape suivante consiste à évaluer ses performances. Nous pouvons utiliser des mesures d'évaluation telles que la matrice de confusion, la précision, le rappel, le score F1, etc.
import sklearn.matrics as metics predictions = model.predict(x_test) print(metices.confusion_matrix(y_test, predictions)) print(metices.accuracy_score(y_test, predictions))
Résumé
L'utilisation de Pandas pour l'exploration et la modélisation des données est la pierre angulaire du processus de science des données. La syntaxe intuitive de Pandas et la prise en charge intégrée des bibliothèques de modélisation statistique le rendent idéal pour faire de la science des données rapidement et efficacement. À mesure que nous continuons à progresser dans le domaine de la science des données, rester compétent dans Pandas nous sera grandement bénéfique alors que nous naviguons dans le paysage en constante évolution des informations basées sur les données et que nous orientons la prise de décision.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Les applications du monde réel de Python incluent l'analyse des données, le développement Web, l'intelligence artificielle et l'automatisation. 1) Dans l'analyse des données, Python utilise des pandas et du matplotlib pour traiter et visualiser les données. 2) Dans le développement Web, les cadres Django et Flask simplifient la création d'applications Web. 3) Dans le domaine de l'intelligence artificielle, Tensorflow et Pytorch sont utilisés pour construire et former des modèles. 4) En termes d'automatisation, les scripts Python peuvent être utilisés pour des tâches telles que la copie de fichiers.

Python est largement utilisé dans les domaines de la science des données, du développement Web et des scripts d'automatisation. 1) Dans la science des données, Python simplifie le traitement et l'analyse des données à travers des bibliothèques telles que Numpy et Pandas. 2) Dans le développement Web, les cadres Django et Flask permettent aux développeurs de créer rapidement des applications. 3) Dans les scripts automatisés, la simplicité de Python et la bibliothèque standard le rendent idéal.

La flexibilité de Python se reflète dans les systèmes de prise en charge et de type dynamique multi-paradigmes, tandis que la facilité d'utilisation provient d'une syntaxe simple et d'une bibliothèque standard riche. 1. Flexibilité: prend en charge la programmation orientée objet, fonctionnelle et procédurale, et les systèmes de type dynamique améliorent l'efficacité de développement. 2. Facilité d'utilisation: La grammaire est proche du langage naturel, la bibliothèque standard couvre un large éventail de fonctions et simplifie le processus de développement.

Python est très favorisé pour sa simplicité et son pouvoir, adaptés à tous les besoins des débutants aux développeurs avancés. Sa polyvalence se reflète dans: 1) Facile à apprendre et à utiliser, syntaxe simple; 2) Bibliothèques et cadres riches, tels que Numpy, Pandas, etc.; 3) Support multiplateforme, qui peut être exécuté sur une variété de systèmes d'exploitation; 4) Convient aux tâches de script et d'automatisation pour améliorer l'efficacité du travail.

Oui, apprenez Python en deux heures par jour. 1. Élaborer un plan d'étude raisonnable, 2. Sélectionnez les bonnes ressources d'apprentissage, 3. Consolider les connaissances apprises par la pratique. Ces étapes peuvent vous aider à maîtriser Python en peu de temps.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Version Mac de WebStorm
Outils de développement JavaScript utiles

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

Dreamweaver Mac
Outils de développement Web visuel