Maison >Tutoriel système >Linux >Comment optimiser et améliorer les performances Linux en 60 secondes ? Seulement 2% des gens le savent

Comment optimiser et améliorer les performances Linux en 60 secondes ? Seulement 2% des gens le savent

WBOY
WBOYavant
2024-02-09 23:48:131076parcourir

Lorsque vous découvrez un problème de performances système sur un serveur Linux, quels indicateurs système vérifierez-vous dans la première minute ?

Netflix dispose d'un cluster EC2 à grande échelle sur AWS, ainsi que d'une variété d'outils d'analyse et de surveillance des performances. Par exemple, nous utilisons Atlas pour surveiller l'ensemble de la plateforme et Vector pour analyser les performances des instances EC2 en temps réel. Ces outils peuvent déjà nous aider à résoudre la plupart des problèmes, mais parfois nous devons quand même nous connecter à la machine et utiliser certains outils standard d'analyse des performances Linux pour localiser le problème.

如何在 60 秒内优化提升 Linux 性能?只有 2% 的人知道

Dans cet article, l'équipe d'ingénierie des performances de Netflix présentera certains des outils de ligne de commande Linux standard que nous utilisons pour analyser et localiser les problèmes dans les 60 premières secondes suivant leur découverte.

Pendant ces 60 secondes, vous pouvez utiliser les 10 lignes de commande suivantes pour comprendre le fonctionnement global du système et l'utilisation des ressources des processus en cours d'exécution.

Parmi ces métriques, nous nous concentrons d'abord sur les métriques liées aux erreurs et au taux de saturation des ressources, puis examinons l'utilisation des ressources. Les erreurs et les taux de saturation des ressources sont relativement faciles à comprendre. La saturation fait référence à la charge sur une ressource (telle que le processeur, la mémoire, le disque) dépassant sa capacité à gérer. Ce que nous observons à ce moment-là, c'est que la file d'attente des requêtes commence à s'accumuler ou que le temps d'attente des requêtes s'allonge.

uptime 
dmesg | tail 
vmstat 1 
mpstat -P ALL 1 
pidstat 1 
iostat -xz 1 
free -m 
sar -n DEV 1 
sar -n TCP,ETCP 1 
top

Certaines lignes de commande dépendent du package sysstat. Grâce à l'utilisation de ces lignes de commande, vous pouvez vous familiariser avec un ensemble de méthodes ou de processus couramment utilisés lors de l'analyse des problèmes de performances du système : UTILISER. Cette méthode analyse principalement toutes les ressources (CPU, mémoire, disque, etc.) sous trois aspects : l'utilisation des ressources (Utilisation), la saturation des ressources (Saturation) et les erreurs (Erreur).

Au cours de ce processus d'analyse, nous devons également toujours prêter attention aux problèmes de ressources que nous avons éliminés afin de restreindre la portée de notre positionnement et de fournir une orientation plus claire pour le prochain positionnement.

Les chapitres suivants fournissent une explication de chaque ligne de commande et utilisent nos données dans l'environnement de production à titre d'exemple. Pour une description plus détaillée de ces lignes de commande, veuillez consulter la documentation d'aide correspondante.

1.uptime

$ uptime

Cette commande peut vérifier rapidement la charge moyenne du système. Vous pouvez considérer cette valeur de charge comme indiquant le nombre de tâches en attente d'exécution. Sur les systèmes Linux, cela inclut les tâches qui souhaitent ou utilisent le processeur, ainsi que les tâches bloquées sur io. Cette commande peut nous donner une compréhension générale de l'état global du système, mais nous devons quand même utiliser d'autres outils pour obtenir plus d'informations.

Ces trois valeurs​​sont les moyennes dynamiques pondérées exponentiellement de 1 minute, 5 minutes et 15 minutes calculées par le système, qui peuvent être simplement considérées comme la valeur moyenne sur cette période de temps. Sur la base de ces trois valeurs, nous pouvons comprendre comment la charge du système évolue au fil du temps. Par exemple, s'il y a un problème avec le système maintenant et que vous vérifiez ces trois valeurs et constatez que la valeur de charge de 1 minute est bien inférieure à la valeur de charge de 15 minutes, alors vous avez probablement manqué le moment de le problème du système.

Dans l'exemple ci-dessus, la moyenne de charge indique 30 en 1 minute, soit plus de 19 en 15 minutes. Il existe de nombreuses raisons pour expliquer l'augmentation de la charge, peut-être que le processeur n'est pas suffisamment utilisé ; vmstat ou mpstat peuvent confirmer davantage où se situe le problème.

2.dmesg | queue

$ dmesg | tail 
[1880957.563150] perl invoked oom-killer: gfp_mask=0x280da, order=0, oom_score_adj=0 

[...] 
[1880957.563400] Out of memory: Kill process 18694 (perl) score 246 or sacrifice child 
[1880957.563408] Killed process 18694 (perl) total-vm:1972392kB, anon-rss:1953348kB, file-

rss:0kB 
[2320864.954447] TCP: Possible SYN flooding on port 7001. Dropping request.  Check SNMP count

Cette commande affiche les derniers journaux système. Ici, nous recherchons principalement s'il existe des erreurs système susceptibles de provoquer des problèmes de performances. L'exemple ci-dessus inclut oom-killer et la perte de paquets TCP.

Ne sautez pas cette étape ! dmesg vaut toujours le détour.

3.vmstat 1

$ vmstat 1 
procs ---------memory---------- ---swap-- -----io---- -system-- ------cpu----- 
r  b swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st 
34  0    0 200889792  73708 591828    0    0     0     5    6   10 96  1  3  0  0 
32  0    0 200889920  73708 591860    0    0     0   592 13284 4282 98  1  1  0  0 
32  0    0 200890112  73708 591860    0    0     0     0 9501 2154 99  1  0  0  0 
32  0    0 200889568  73712 591856    0    0     0    48 11900 2459 99  0  0  0  0 
32  0    0 200890208  73712 591860    0    0     0     0 15898 4840 98  1  1  0  0 
^C

vmstat montre certaines conditions de la mémoire virtuelle et du CPU. Dans l'exemple ci-dessus, 1 dans la ligne de commande signifie l'afficher toutes les 1 seconde. Dans cette version de vmstat, la première ligne représente les différents indicateurs depuis ce démarrage. On peut ignorer temporairement la première ligne.

Indicateurs à vérifier :

  • r:处在 runnable 状态的任务,包括正在运行的任务和等待运行的任务。这个值比平均负载能更好地看出 CPU 是否饱和。这个值不包含等待 io 相关的任务。当 r 的值比当前 CPU 个数要大的时候,系统就处于饱和状态了。
  • free:以 KB 计算的空闲内存大小。
  • si,so:换入换出的内存页。如果这两个值非零,表示内存不够了。
  • us,sy,id,wa,st:CPU 时间的各项指标(对所有 CPU 取均值),分别表示:用户态时间,内核态时间,空闲时间,等待 io,偷取时间(在虚拟化环境下系统在其它租户上的开销)

把用户态 CPU 时间(us)和内核态 CPU 时间(sy)加起来,我们可以进一步确认 CPU 是否繁忙。等待 IO 的时间(wa)高的话,表示磁盘是瓶颈;注意,这个也被包含在空闲时间里面(id), CPU 这个时候也是空闲的,任务此时阻塞在磁盘 IO 上了。你可以把等待 IO 的时间(wa)看做另一种形式的 CPU 空闲,它可以告诉你 CPU 为什么是空闲的。

系统处理 IO 的时候,肯定是会消耗内核态时间(sy)的。如果内核态时间较多的话,比如超过 20%,我们需要进一步分析,也许内核对 IO 的处理效率不高。

在上面这个例子里,CPU 时间大部分都消耗在了用户态,表明主要是应用层的代码在使用 CPU。CPU 利用率(us + sy)也超过了 90%,这不一定是一个问题;我们可以通过 r 和 CPU 个数确定 CPU 的饱和度。

4. mpstat -P ALL 1

$ mpstat -P ALL 1 
Linux 3.13.0-49-generic (titanclusters-xxxxx)  07/14/2015  _x86_64_ (32 CPU)

07:38:49 PM  CPU   %usr  %nice   %sys %iowait   %irq  %soft  %steal  %guest 
 %gnice  %idle 
07:38:50 PM  all  98.47   0.00   0.75    0.00   0.00   0.00    0.00    0.00  
 0.00   0.78 
07:38:50 PM    0  96.04   0.00   2.97    0.00   0.00   0.00    0.00    0.00   
 0.00   0.99 
07:38:50 PM    1  97.00   0.00   1.00    0.00   0.00   0.00    0.00    0.00  
  0.00   2.00 
07:38:50 PM    2  98.00   0.00   1.00    0.00   0.00   0.00    0.00    0.00   
 0.00   1.00 
07:38:50 PM    3  96.97   0.00   0.00    0.00   0.00   0.00    0.00    0.00   
0.00   3.03 
[...]

这个命令把每个 CPU 的时间都打印出来,可以看看 CPU 对任务的处理是否均匀。比如,如果某一单个 CPU 使用率很高的话,说明这是一个单线程应用。

5. pidstat 1

$ pidstat 1 
Linux 3.13.0-49-generic (titanclusters-xxxxx)  07/14/2015    _x86_64_    (32 CPU)

07:41:02 PM   UID       PID    %usr %system  %guest    %CPU   CPU  Command 
07:41:03 PM     0         9    0.00    0.94    0.00    0.94     1  rcuos/0 
07:41:03 PM     0      4214    5.66    5.66    0.00   11.32    15  mesos-slave 
07:41:03 PM     0      4354    0.94    0.94    0.00    1.89     8  java 
07:41:03 PM     0      6521 1596.23    1.89    0.00 1598.11    27  java 
07:41:03 PM     0      6564 1571.70    7.55    0.00 1579.25    28  java 
07:41:03 PM 60004     60154    0.94    4.72    0.00    5.66     9  pidstat

07:41:03 PM   UID       PID    %usr %system  %guest    %CPU   CPU  Command 
07:41:04 PM     0      4214    6.00    2.00    0.00    8.00    15  mesos-slave 
07:41:04 PM     0      6521 1590.00    1.00    0.00 1591.00    27  java 
07:41:04 PM     0      6564 1573.00   10.00    0.00 1583.00    28  java 
07:41:04 PM   108      6718    1.00    0.00    0.00    1.00     0  snmp-pass 
07:41:04 PM 60004     60154    1.00    4.00    0.00    5.00     9  pidstat 
^C

pidstat 和 top 很像,不同的是它可以每隔一个间隔打印一次,而不是像 top 那样每次都清屏。这个命令可以方便地查看进程可能存在的行为模式,你也可以直接 copy past,可以方便地记录随着时间的变化,各个进程运行状况的变化。

上面的例子说明有 2 个 Java 进程消耗了大量 CPU。这里的 %CPU 表明的是对所有 CPU 的值,比如 1591% 标识这个 Java 进程几乎消耗了 16 个 CPU。

6. iostat -xz 1

$ iostat -xz 1 
Linux 3.13.0-49-generic (titanclusters-xxxxx)  07/14/2015  x86_64 (32 CPU) 
avg-cpu:  %user   %nice %system %iowait  %steal   %idle 
73.96    0.00    3.73    0.03    0.06   22.21 
Device:   rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz 
  await r_await w_await  svctm  %util 
xvda        0.00     0.23    0.21    0.18     4.52     2.08    34.37     0.00    
9.98   13.80    5.42   2.44   0.09 
xvdb        0.01     0.00    1.02    8.94   127.97   598.53   145.79     0.00   
 0.43    1.78    0.28   0.25   0.25 
xvdc        0.01     0.00    1.02    8.86   127.79   595.94   146.50     0.00    
0.45    1.82    0.30   0.27   0.26 
dm-0        0.00     0.00    0.69    2.32    10.47    31.69    28.01     0.01    3.23 
   0.71    3.98   0.13   0.04 
dm-1        0.00     0.00    0.00    0.94     0.01     3.78     8.00     0.33  345.84  
  0.04  346.81   0.01   0.00 
dm-2        0.00     0.00    0.09    0.07     1.35     0.36    22.50     0.00    2.55 
   0.23

iostat 是理解块设备(磁盘)的当前负载和性能的重要工具。几个指标的含义:

  • r/s,w/s,rkB/s,wkB/s:系统发往设备的每秒的读次数、每秒写次数、每秒读的数据量、每秒写的数据量。这几个指标反映的是系统的工作负载。系统的性能问题很有可能就是负载太大。
  • await:系统发往 IO 设备的请求的平均响应时间。这包括请求排队的时间,以及请求处理的时间。超过经验值的平均响应时间表明设备处于饱和状态,或者设备有问题。
  • avgqu-sz:设备请求队列的平均长度。队列长度大于 1 表示设备处于饱和状态。
  • %util:设备利用率。设备繁忙的程度,表示每一秒之内,设备处理 IO 的时间占比。大于 60% 的利用率通常会导致性能问题(可以通过 await 看到),但是每种设备也会有有所不同。接近 100% 的利用率表明磁盘处于饱和状态。

如果这个块设备是一个逻辑块设备,这个逻辑快设备后面有很多物理的磁盘的话,100% 利用率只能表明有些 IO 的处理时间达到了 100%;后端的物理磁盘可能远远没有达到饱和状态,可以处理更多的负载。

还有一点需要注意的是,较差的磁盘 IO 性能并不一定意味着应用程序会有问题。应用程序可以有许多方法执行异步 IO,而不会阻塞在 IO 上面;应用程序也可以使用诸如预读取,写缓冲等技术降低 IO 延迟对自身的影响。

7. free -m

$ free -m
            total       used       free       shared    buffers     cached
Mem:        245998      24545     221453         83         59        541
-/+ buffers/cache:      23944     222053
Swap:

右边的两列显式:

  • buffers:用于块设备 I/O 的缓冲区缓存。
  • cached:用于文件系统的页面缓存。

我们只是想要检查这些不接近零的大小,其可能会导致更高磁盘 I/O(使用 iostat 确认),和更糟糕的性能。上面的例子看起来还不错,每一列均有很多 M 个大小。

比起第一行,-/+ buffers/cache 提供的内存使用量会更加准确些。Linux 会把暂时用不上的内存用作缓存,一旦应用需要的时候就立刻重新分配给它。所以部分被用作缓存的内存其实也算是空闲的内存。为了解释这一点, 甚至有人专门建了个网站:http://www.linuxatemyram.com/。

如果使用 ZFS 的话,可能会有点困惑。ZFS 有自己的文件系统缓存,在 free -m 里面看不到;系统看起来空闲内存不多了,但是有可能 ZFS 有很多的缓存可用。

8. sar -n DEV 1

$ sar -n DEV 1 
Linux 3.13.0-49-generic (titanclusters-xxxxx)  07/14/2015     _x86_64_    (32 CPU)

12:16:48 AM     IFACE   rxpck/s   txpck/s    rxkB/s    txkB/s   rxcmp/s   txcmp/s  rxmcst/s 
  %ifutil 
12:16:49 AM      eth0  18763.00   5032.00  20686.42    478.30      0.00      0.00      0.00     
 0.00 
12:16:49 AM        lo     14.00     14.00      1.36      1.36      0.00      0.00      0.00    
  0.00 
12:16:49 AM   docker0      0.00      0.00      0.00      0.00      0.00      0.00      0.00     
 0.00

12:16:49 AM     IFACE   rxpck/s   txpck/s    rxkB/s    txkB/s   rxcmp/s   txcmp/s  rxmcst/s 
  %ifutil 
12:16:50 AM      eth0  19763.00   5101.00  21999.10    482.56      0.00      0.00      0.00    
  0.00 
12:16:50 AM        lo     20.00     20.00      3.25      3.25      0.00      0.00      0.00    
  0.00 
12:16:50 AM   docker0      0.00      0.00      0.00      0.00      0.00      0.00      0.00    
  0.00 
^C

这个工具可以查看网络接口的吞吐量:rxkB/s 和 txkB/s 可以测量负载,也可以看是否达到网络流量限制了。在上面的例子里,eth0 的吞吐量达到了大约 22 Mbytes/s,差不多 176 Mbits/sec ,比 1 Gbit/sec 还要少很多。

这个例子里也有 %ifutil 标识设备利用率,我们也用 Brenan 的 nicstat tool 测量。和 nicstat 一样,这个设备利用率很难测量正确,上面的例子里好像这个值还有点问题。

9. sar -n TCP,ETCP 1

$ sar -n TCP,ETCP 1 
Linux 3.13.0-49-generic (titanclusters-xxxxx)  07/14/2015    _x86_64_    (32 CPU)

12:17:19 AM  active/s passive/s    iseg/s    oseg/s 
12:17:20 AM      1.00      0.00  10233.00  18846.00

12:17:19 AM  atmptf/s  estres/s retrans/s isegerr/s   orsts/s 
12:17:20 AM      0.00      0.00      0.00      0.00      0.00

12:17:20 AM  active/s passive/s    iseg/s    oseg/s 
12:17:21 AM      1.00      0.00   8359.00   6039.00

12:17:20 AM  atmptf/s  estres/s retrans/s isegerr/s   orsts/s 
12:17:21 AM      0.00      0.00      0.00      0.00      0.00 
^C

这是对 TCP 重要指标的一些概括,包括:

  • active/s:每秒钟本地主动开启的 TCP 连接,也就是本地程序使用 connect() 系统调用
  • passive/s:每秒钟从源端发起的 TCP 连接,也就是本地程序使用 accept() 所接受的连接
  • retrans/s:每秒钟的 TCP 重传次数
  • atctive 和 passive 的数目通常可以用来衡量服务器的负载:接受连接的个数(passive),下游连接的个数(active)。可以简单认为 active 为出主机的连接,passive 为入主机的连接;但这个不是很严格的说法,比如 loalhost 和 localhost 之间的连接。

重传表示网络或者服务器的问题。也许是网络不稳定了,也许是服务器负载过重开始丢包了。上面这个例子表示每秒只有 1 个新连接建立。

10. top

$ top 
top - 00:15:40 up 21:56,  1 user,  load average: 31.09, 29.87, 29.92 
Tasks: 871 total,   1 running, 868 sleeping,   0 stopped,   2 zombie 
%Cpu(s): 96.8 us,  0.4 sy,  0.0 ni,  2.7 id,  0.1 wa,  0.0 hi,  0.0 si,  0.0 st 
KiB Mem:  25190241+total, 24921688 used, 22698073+free,    60448 buffers 
KiB Swap:        0 total,        0 used,        0 free.   554208 cached Mem

PID     USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND 
20248   root      20   0  0.227t 0.012t  18748 S  3090  5.2  29812:58 java 
4213    root      20   0 2722544  64640  44232 S  23.5  0.0 233:35.37 mesos-slave 
66128   titancl+  20   0   24344   2332   1172 R   1.0  0.0   0:00.07 top 
5235    root      20   0 38.227g 547004  49996 S   0.7  0.2   2:02.74 java 
4299    root      20   0 20.015g 2.682g  16836 S   0.3  1.1  33:14.42 java 
 1      root      20   0   33620   2920   1496 S   0.0  0.0   0:03.82 init 
 2      root      20   0       0      0      0 S   0.0  0.0   0:00.02 kthreadd 
 3      root      20   0       0      0      0 S   0.0  0.0   0:05.35 ksoftirqd/0 
 5      root       0 -20       0      0      0 S   0.0  0.0   0:00.00 kworker/0:0H

top 命令涵盖了我们前面讲述的许多指标。我们可以用它来看和我们之前查看的结果有没有很大的不同,如果有的话,那表示系统的负载在变化。

top 的缺点就是你很难找到这些指标随着时间的一些行为模式,在这种情况下,vmstat 或者 pidstat 这种可以提供滚动输出的命令是更好的方式。如果你不以足够快的速度暂停输出(Ctrl-S 暂停,Ctrl-Q 继续),一些间歇性问题的线索也可能由于被清屏而丢失。

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer