Maison >développement back-end >Tutoriel Python >Comment créer des colonnes basées sur d'autres filtres de lignes DataFrame ?
J'ai un lazyframe appelé "hourly_data" qui contient une colonne datetime horaire appelée "time". J'ai également un dataframe appelé "future_periods" qui contient deux colonnes datetime appelées "start" (datetime de début de la période future) et "end" (heure de fin de la période future). Il est important de noter que ces périodes futures ne se chevauchent pas.
Je souhaite créer une colonne appelée "période" pour lazyframe hour_data, elle doit avoir une valeur int basée sur la période (ligne de dataframe future_periods, de 0 à 9 s'il y a 10 périodes) valeur de la colonne de temps de hour_data La valeur est comprise entre valeurs des colonnes de début et de fin de futures_periods.
J'ai essayé de faire ce qui suit :
periods = pl.series(range(future_periods.height)) hourly_data = hourly_data.with_columns( ( pl.when(((future_periods.get_column('start') <= pl.col('time')) & (pl.col('time') <= future_periods.get_column('end'))).any()) .then(periods.filter(pl.series((future_periods.get_column('start') <= pl.col('real_time')) & (pl.col('real_time') <= future_periods.get_column('end')))).to_list()[0]) .otherwise(none) ).alias('period') )
Mais cela me donne l'erreur : typeerror : appel du constructeur de série avec un type 'expr' non pris en charge pour values
argument
Ce que je veux réaliser : Entrée :
hourly_data: ┌────────────────────┐ │ time │ │ --- │ │ datetime │ ╞════════════════════╡ │ 2024-01-01 00:00:00│ │ 2024-01-01 01:00:00│ │ 2024-01-01 02:00:00│ │ ... │ │ 2024-03-31 23:00:00│ │ 2024-04-01 00:00:00│ │ 2024-04-01 01:00:00│ │ ... │ │ 2024-06-01 00:00:00│ └────────────────────┘ future_periods: ┌─────────────────────────┬───────────────────────┐ │ start ┆ end │ │ --- ┆ --- │ │ datetime ┆ datetime │ ╞═════════════════════════╪═══════════════════════╡ │ 2024-01-01 00:00:00 ┆ 2024-01-31 23:00:00 │ │ 2024-02-01 00:00:00 ┆ 2024-02-28 23:00:00 │ │ 2024-03-01 00:00:00 ┆ 2024-03-31 23:00:00 │ │ 2024-04-01 00:00:00 ┆ 2024-05-31 23:00:00 │ └─────────────────────────┴───────────────────────┘
Sortie :
hourly_data: ┌─────────────────────────┬────────┐ │ time ┆ period │ │ --- ┆ --- │ │ datetime ┆ int │ ╞═════════════════════════╪════════╡ │ 2024-01-01 00:00:00 ┆ 0 │ │ 2024-01-01 01:00:00 ┆ 0 │ │ 2024-01-01 02:00:00 ┆ 0 │ │ ... ┆ ... │ │ 2024-03-31 23:00:00 ┆ 2 │ │ 2024-04-01 00:00:00 ┆ 3 │ │ 2024-04-01 01:00:00 ┆ 3 │ │ ... ┆ ... │ │ 2024-06-01 00:00:00 ┆ None │ └─────────────────────────┴────────┘
De manière générale, il s'agit d'une jointure d'inégalité, ou dans votre cas, d'une jointure de plage. Voici une façon de procéder. Commençons par créer quelques exemples de données :
hourly_data = pl.dataframe({ "time": ['2023-01-01 14:00','2023-01-02 09:00', '2023-01-04 11:00'] }).lazy() future_periods = pl.dataframe({ "id": [1,2,3,4], "start": ['2023-01-01 11:00','2023-01-02 10:00', '2023-01-03 15:00', '2023-01-04 10:00'], "end": ['2023-01-01 16:00','2023-01-02 11:00', '2023-01-03 18:00', '2023-01-04 15:00'] }).lazy() ┌──────────────────┬──────┐ │ time ┆ data │ │ --- ┆ --- │ │ str ┆ str │ ╞══════════════════╪══════╡ │ 2023-01-01 14:00 ┆ a │ │ 2023-01-02 09:00 ┆ b │ │ 2023-01-04 11:00 ┆ c │ └──────────────────┴──────┘ ┌─────┬──────────────────┬──────────────────┐ │ id ┆ start ┆ end │ │ --- ┆ --- ┆ --- │ │ i64 ┆ str ┆ str │ ╞═════╪══════════════════╪══════════════════╡ │ 1 ┆ 2023-01-01 11:00 ┆ 2023-01-01 16:00 │ │ 2 ┆ 2023-01-02 10:00 ┆ 2023-01-02 11:00 │ │ 3 ┆ 2023-01-03 15:00 ┆ 2023-01-03 18:00 │ │ 4 ┆ 2023-01-04 10:00 ┆ 2023-01-04 15:00 │ └─────┴──────────────────┴──────────────────┘
Maintenant, vous pouvez le faire en deux étapes - d'abord, calculez les liens entre time
和未来时段 id
:
time_periods = ( hourly_data .join(future_periods, how="cross") .filter( pl.col("time") > pl.col("start"), pl.col("time") < pl.col("end") ).select(["time","id"]) ) ┌──────────────────┬─────┐ │ time ┆ id │ │ --- ┆ --- │ │ str ┆ i64 │ ╞══════════════════╪═════╡ │ 2023-01-01 14:00 ┆ 1 │ │ 2023-01-04 11:00 ┆ 4 │ └──────────────────┴─────┘
Vous pouvez ensuite le joindre au bloc de données d'origine :
hourly_data.join(time_periods, how="left", on="time").collect() ┌──────────────────┬──────┬──────┐ │ time ┆ data ┆ id │ │ --- ┆ --- ┆ --- │ │ str ┆ str ┆ i64 │ ╞══════════════════╪══════╪══════╡ │ 2023-01-01 14:00 ┆ a ┆ 1 │ │ 2023-01-02 09:00 ┆ b ┆ null │ │ 2023-01-04 11:00 ┆ c ┆ 4 │ └──────────────────┴──────┴──────┘
Une autre façon de procéder pourrait être d'utiliser l'duckdb
感谢 与 polars
intégration :
import duckdb import polars as pl duckdb.sql(""" select h.time, h.data, p.id from hourly_data as h left join future_periods as p on p.start < h.time and p.end > h.time """).pl() ┌──────────────────┬──────┬──────┐ │ time ┆ data ┆ id │ │ --- ┆ --- ┆ --- │ │ str ┆ str ┆ i64 │ ╞══════════════════╪══════╪══════╡ │ 2023-01-01 14:00 ┆ A ┆ 1 │ │ 2023-01-04 11:00 ┆ C ┆ 4 │ │ 2023-01-02 09:00 ┆ B ┆ null │ └──────────────────┴──────┴──────┘
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!