Maison > Article > développement back-end > Comment juger différents types d'arbres binaires à l'aide de Python
二叉树是一种树状数据结构,其中每个父节点最多可以有两个子节点。
完全二叉树是一种特殊类型的二叉树,其父节点存在2种情况,要么有2个子节点,要么没有子节点,详情如下图:
1、叶数为i+1
2、节点总数为2i+1
3、内部节点数为(n–1)/2
4、叶数为(n+1)/2
5、节点总数为2l–1
6、内部节点数为l–1
7、叶子的数量最多2^λ-1
class Node: def __init__(self,item): self.item=item self.leftChild=None self.rightChild=None def isFullTree(root): if root is None: return True if root.leftChild is None and root.rightChild is None: return True if root.leftChild is not None and root.rightChild is not None: return(isFullTree(root.leftChild)and isFullTree(root.rightChild)) return False root=Node(1) root.rightChild=Node(3) root.leftChild=Node(2) root.leftChild.leftChild=Node(4) root.leftChild.rightChild=Node(5) root.leftChild.rightChild.leftChild=Node(6) root.leftChild.rightChild.rightChild=Node(7) if isFullTree(root): print("The tree is a full binary tree") else: print("The tree is not a full binary tree")
完美二叉树的每个内部节点都恰好有两个子节点,并且所有叶节点都在同一级别,如下图:
1、高度为h的完美二叉树有2^(h+1)–1个节点
2、具有n个节点的完美二叉树的高度为log(n+1)–1=Θ(ln(n))。
3、高度为h的完美二叉树具有2^h节点
4、完美二叉树中节点的平均深度为Θ(ln(n))。
class newNode: def __init__(self,k): self.key=k self.right=self.left=None def calculateDepth(node): d=0 while(node is not None): d+=1 node=node.left return d def is_perfect(root,d,level=0): if(root is None): return True if(root.left is None and root.right is None): return(d==level+1) if(root.left is None or root.right is None): return False return(is_perfect(root.left,d,level+1)and is_perfect(root.right,d,level+1)) root=None root=newNode(1) root.left=newNode(2) root.right=newNode(3) root.left.left=newNode(4) root.left.right=newNode(5) if(is_perfect(root,calculateDepth(root))): print("The tree is a perfect binary tree") else: print("The tree is not a perfect binary tree")
退化或病态树只具有左或右单个子节点的二叉树,如下图:
倾斜二叉树要么由左节点支配,要么由右节点支配。因此,有左二叉树和右二叉树两种类型,如下图:
平衡二叉树每个节点的左子树和右子树的高度之差为0或1,如下图:
class Node: def __init__(self,data): self.data=data self.left=self.right=None class Height: def __init__(self): self.height=0 def isHeightBalanced(root,height): left_height=Height() right_height=Height() if root is None: return True l=isHeightBalanced(root.left,left_height) r=isHeightBalanced(root.right,right_height) height.height=max(left_height.height,right_height.height)+1 if abs(left_height.height-right_height.height)<=1: return l and r return False height=Height() root=Node(1) root.left=Node(2) root.right=Node(3) root.left.left=Node(4) root.left.right=Node(5) if isHeightBalanced(root,height): print('The tree is balanced') else: print('The tree is not balanced')
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!