recherche
MaisonPériphériques technologiquesIAApplication d'algorithmes de recommandation dans l'apprentissage automatique

Application dalgorithmes de recommandation dans lapprentissage automatique

Les algorithmes de recommandation sont largement utilisés dans les secteurs du commerce électronique et des vidéos courtes. Ils analysent les préférences et les intérêts des utilisateurs, filtrent et traitent des données massives et fournissent aux utilisateurs les informations les plus pertinentes. Cet algorithme peut recommander avec précision un contenu intéressant en fonction des besoins personnels de l'utilisateur.

L'algorithme de recommandation est une méthode utilisée pour déterminer la compatibilité des utilisateurs et des objets, ainsi que la similarité entre les utilisateurs et les éléments, pour faire des recommandations. Cet algorithme est très utile tant pour les utilisateurs que pour les services fournis. Avec ces solutions, nous pouvons améliorer la qualité et les processus décisionnels. En outre, ces algorithmes peuvent être largement utilisés pour recommander divers éléments, notamment des films, des livres, des actualités, des articles, des emplois et des publicités.

Les algorithmes de recommandation sont principalement divisés en trois types :

  1. Filtrage basé sur le contenu
  2. Filtrage collaboratif
  3. Système de recommandation hybride

Filtrage basé sur le contenu

Cette forme d'algorithme de recommandation est basée sur les éléments que l'utilisateur a précédemment recherché. Le contenu affiche les éléments associés. Les attributs/balises du produit que l'utilisateur aime sont appelés contenu dans ce cas. Dans ce type de système, les articles sont étiquetés avec des mots-clés et le système recherche dans la base de données pour comprendre les besoins de l'utilisateur et recommande finalement différents produits souhaités par l'utilisateur.

Prenons l'exemple de l'algorithme de recommandation de films. Chaque film se voit attribuer un genre, également appelé balise ou attribut. Supposons que lorsqu'un utilisateur accède pour la première fois au système, le système ne dispose d'aucune information sur l'utilisateur. Par conséquent, le système essaiera d’abord de recommander des films populaires à l’utilisateur ou de collecter des informations sur l’utilisateur en lui demandant de remplir un formulaire. Au fil du temps, les utilisateurs peuvent évaluer certains films, par exemple en attribuant une bonne note aux films d'action et aux films d'animation une note faible. Le résultat est que l’algorithme de recommandation recommandera davantage de films d’action aux utilisateurs.

Avantages du filtrage basé sur le contenu

  • Étant donné que les recommandations sont adaptées à un seul utilisateur, le modèle ne nécessite pas de données provenant d'autres utilisateurs.
  • Facilitez la mise à l'échelle.
  • Le modèle peut identifier les intérêts personnels de l’utilisateur et recommander des articles qui intéressent seulement quelques autres utilisateurs.

Inconvénients du filtrage basé sur le contenu

  • Dans la mesure où la représentation des fonctionnalités du projet est conçue à la main, cette technique nécessite beaucoup de connaissances du domaine.
  • Le modèle ne peut faire que des recommandations basées sur les intérêts antérieurs de l'utilisateur.

Filtrage collaboratif

Le filtrage basé sur la collaboration est une méthode permettant de recommander de nouveaux articles aux consommateurs en fonction des intérêts et des préférences d'autres utilisateurs similaires. Par exemple, lors d'un achat en ligne, le système peut recommander de nouveaux produits sur la base d'informations telles que « Les clients qui ont acheté ceci l'ont également acheté ». Cette approche est supérieure au filtrage basé sur le contenu car elle ne repose pas sur l'interaction de l'utilisateur avec le contenu, mais formule plutôt des recommandations basées sur le comportement historique de l'utilisateur. En analysant les données passées, nous pouvons supposer que les utilisateurs seront intéressés par des articles similaires à l'avenir. Cette approche évite les limites du filtrage basé sur le contenu et fournit des recommandations plus précises.

Le filtrage collaboratif peut être divisé en deux catégories :

Dans le filtrage collaboratif basé sur les utilisateurs, le système identifie les utilisateurs ayant des préférences d'achat similaires et calcule la similarité en fonction de leur comportement d'achat.

L'algorithme de filtrage collaboratif basé sur les articles recherche d'autres articles similaires à l'article acheté par le consommateur, et la similarité est calculée en fonction des articles plutôt que des utilisateurs.

Avantages du filtrage collaboratif

  • Cela fonctionne bien même si les données sont petites.
  • Ce modèle aide les utilisateurs à découvrir un nouvel intérêt pour un article spécifique, bien que si d'autres utilisateurs ont le même intérêt, le modèle peut toujours le recommander.
  • Aucune connaissance du domaine requise.

Inconvénients du filtrage collaboratif

  • Il ne peut pas gérer de nouvelles choses car le modèle n'est pas entraîné sur les objets nouvellement ajoutés à la base de données.
  • L'importance des fonctionnalités secondaires est ignorée.

Algorithme de recommandation hybride

Différents types d'algorithmes de recommandation ont leurs propres avantages et inconvénients, mais sont limités lorsqu'ils sont utilisés seuls, en particulier lorsque plusieurs sources de données sont utilisées pour le même problème.

Le parallèle et le séquentiel sont les méthodes de conception les plus courantes des systèmes de recommandation hybrides. Dans une architecture parallèle, plusieurs algorithmes de recommandation fournissent des entrées en même temps et combinent leurs résultats de sortie pour obtenir un seul résultat de recommandation. L'architecture séquentielle transmet les paramètres d'entrée à un moteur de recommandation, qui génère des résultats de recommandation, puis les transmet au recommandateur suivant de la série. Cette approche de conception peut améliorer la précision et l'efficacité du système de recommandation.

Avantages des systèmes de recommandation hybrides

Les systèmes hybrides intègrent plusieurs modèles pour surmonter les lacunes d'un seul modèle. Dans l’ensemble, cela atténue les inconvénients de l’utilisation d’un modèle unique et permet de générer des recommandations plus fiables. En conséquence, les utilisateurs recevront des recommandations plus puissantes et personnalisées.

Inconvénients des systèmes de recommandation hybrides

Ces modèles sont souvent difficiles à calculer et nécessitent une grande base de données d'évaluations et d'autres critères pour rester à jour. Sans mesures à jour, il est difficile de se recycler et de fournir de nouvelles recommandations avec des éléments et des évaluations mis à jour par différents utilisateurs.

Dans l'ensemble, l'algorithme de recommandation permet aux utilisateurs de choisir facilement leurs options préférées et leurs domaines d'intérêt, adaptés à leurs préférences. Actuellement, les algorithmes de recommandation sont utilisés dans de nombreuses applications courantes.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer
Appel d'outil dans LLMSAppel d'outil dans LLMSApr 14, 2025 am 11:28 AM

Les modèles de grands langues (LLM) ont augmenté en popularité, la fonctionnalité d'appel à l'outil élargissant considérablement leurs capacités au-delà de la génération de texte simple. Maintenant, les LLM peuvent gérer des tâches d'automatisation complexes telles que la création d'interface utilisateur dynamique et l'autonomie A

Comment les jeux de TDAH, les outils de santé et les chatbots d'IA transforment la santé mondialeComment les jeux de TDAH, les outils de santé et les chatbots d'IA transforment la santé mondialeApr 14, 2025 am 11:27 AM

Un jeu vidéo peut-il faciliter l'anxiété, se concentrer ou soutenir un enfant atteint de TDAH? Au fur et à mesure que les défis de la santé augmentent à l'échelle mondiale - en particulier chez les jeunes - les innovateurs se tournent vers un outil improbable: les jeux vidéo. Maintenant l'un des plus grands divertissements du monde Indus

Entrée des Nations Unies sur l'IA: gagnants, perdants et opportunitésEntrée des Nations Unies sur l'IA: gagnants, perdants et opportunitésApr 14, 2025 am 11:25 AM

«L'histoire a montré que bien que les progrès technologiques stimulent la croissance économique, elle n'assure pas elle-même une répartition des revenus équitable ou la promotion du développement humain inclusif», écrit Rebeca Grynspan, secrétaire général de la CNUCTAD, dans le préambule.

Compétences de négociation d'apprentissage via une IA générativeCompétences de négociation d'apprentissage via une IA générativeApr 14, 2025 am 11:23 AM

Easy PEASY, utilisez une IA générative comme tuteur de négociation et partenaire d'entraînement. Parlons-en. Cette analyse d'une percée innovante de l'IA fait partie de ma couverture de colonne Forbes en cours sur la dernière IA, y compris l'identification et l'explication

Ted révèle d'Openai, Google, Meta se dirige vers le tribunal, Selfie avec moi-mêmeTed révèle d'Openai, Google, Meta se dirige vers le tribunal, Selfie avec moi-mêmeApr 14, 2025 am 11:22 AM

La conférence TED2025, qui s'est tenue à Vancouver, a terminé sa 36e édition hier 11 avril. Il a présenté 80 conférenciers de plus de 60 pays, dont Sam Altman, Eric Schmidt et Palmer Luckey. Le thème de Ted, «l'humanité repensée», a été fait sur mesure

Joseph Stiglitz met en garde contre l'inégalité imminente au milieu du pouvoir monopoleJoseph Stiglitz met en garde contre l'inégalité imminente au milieu du pouvoir monopoleApr 14, 2025 am 11:21 AM

Joseph Stiglitz est économiste de renom et récipiendaire du prix Nobel en économie en 2001. Stiglitz postule que l'IA peut aggraver les inégalités existantes et le pouvoir consolidé entre les mains de quelques sociétés dominantes, sapant finalement économique économique

Qu'est-ce que la base de données de graphiques?Qu'est-ce que la base de données de graphiques?Apr 14, 2025 am 11:19 AM

Bases de données graphiques: révolutionner la gestion des données à travers les relations À mesure que les données se développent et que ses caractéristiques évoluent sur divers champs, les bases de données de graphiques émergent comme des solutions transformatrices pour gérer les données interconnectées. Contrairement à la traditionnelle

Routage LLM: stratégies, techniques et implémentation PythonRoutage LLM: stratégies, techniques et implémentation PythonApr 14, 2025 am 11:14 AM

Routage de modèle de grande langue (LLM): optimiser les performances grâce à une distribution de tâches intelligente Le paysage en évolution rapide de LLMS présente une gamme diversifiée de modèles, chacun avec des forces et des faiblesses uniques. Certains excellent dans le contenu créatif Gen

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP

VSCode Windows 64 bits Télécharger

VSCode Windows 64 bits Télécharger

Un éditeur IDE gratuit et puissant lancé par Microsoft

Version Mac de WebStorm

Version Mac de WebStorm

Outils de développement JavaScript utiles