


Comparez les similitudes, les différences et les relations entre la convolution dilatée et la convolution atreuse
La convolution dilatée et la convolution dilatée sont des opérations couramment utilisées dans les réseaux de neurones convolutifs. Cet article présentera en détail leurs différences et leurs relations.
1. Convolution dilatée
La convolution dilatée, également connue sous le nom de convolution dilatée ou convolution dilatée, est une opération dans un réseau neuronal convolutif. Il s'agit d'une extension basée sur l'opération de convolution traditionnelle et augmente le champ récepteur du noyau de convolution en insérant des trous dans le noyau de convolution. De cette façon, le réseau peut mieux capturer un plus large éventail de fonctionnalités. La convolution dilatée est largement utilisée dans le domaine du traitement d'images et peut améliorer les performances du réseau sans augmenter le nombre de paramètres ni la quantité de calcul. En élargissant le champ de réception du noyau de convolution, la convolution dilatée peut mieux traiter les informations globales dans l'image, améliorant ainsi l'effet d'extraction de caractéristiques.
L'idée principale de la convolution dilatée est d'introduire des intervalles autour du noyau de convolution. Ces intervalles permettent au noyau de convolution de se déplacer sur la carte des caractéristiques d'entrée de manière "sautante", augmentant ainsi la taille de la caractéristique de sortie. map. , tout en gardant la taille du noyau de convolution inchangée. Plus précisément, en supposant que la carte des caractéristiques en entrée est X_{(i+mtimes r),(j+ntimes r)}K_{m,n}
où r est le taux d'expansion, indiquant la taille du trou dans le noyau de convolution, m et n sont l'index de ligne et de colonne. En modifiant la taille du taux d'expansion r, des cartes caractéristiques de différents champs récepteurs peuvent être obtenues.
2. Convolution atreuse
La convolution atreuse est une opération de convolution couramment utilisée dans les réseaux neuronaux convolutifs. Elle est très similaire au concept de convolution dilatée, mais leur mise en œuvre est légèrement différente. La différence entre la convolution dilatée et l'opération de convolution traditionnelle est que certains trous sont insérés dans l'opération de convolution. Ces trous peuvent faire "sauter" le noyau de convolution sur la carte des caractéristiques d'entrée, réduisant ainsi la taille de la carte des caractéristiques de sortie tout en conservant l'augmentation. la taille du noyau de convolution inchangée.
L'idée principale de la convolution dilatée est d'insérer des trous dans le noyau de convolution. Ces trous peuvent faire "sauter" le noyau de convolution sur la carte des caractéristiques d'entrée, augmentant ainsi la taille de la carte des caractéristiques de sortie. en gardant la taille du noyau de convolution inchangée. Plus précisément, en supposant que la carte des caractéristiques d'entrée est X_{(i+mtimes r),(j+ntimes r)}K_{m,n}
où r est le taux de trou, indiquant la taille du trou inséré, m et n sont les lignes et les colonnes de l'index du noyau de convolution. En modifiant la taille du taux de trous r, des cartes caractéristiques de différents champs récepteurs peuvent être obtenues.
3. La relation entre convolution dilatée et convolution dilatée
Les concepts de convolution dilatée et de convolution dilatée sont très similaires. Ce sont deux extensions basées sur des opérations de convolution traditionnelles. En fait, la convolution dilatée peut être considérée comme une forme particulière de convolution dilatée, car le taux de trous d en convolution dilatée est en fait le taux de trous r-1 en convolution dilatée. Par conséquent, la convolution dilatée peut être considérée comme un type spécial de convolution dilatée, qui élargit le champ récepteur du noyau de convolution en insérant des trous, et peut également être mise en œuvre en utilisant une convolution dilatée.
De plus, la convolution dilatée et la convolution dilatée peuvent être utilisées pour une variété de tâches dans les réseaux de neurones convolutifs, telles que la classification d'images, la segmentation sémantique, etc. Cependant, comme le taux de trous d en convolution dilatée est discret, son champ récepteur est légèrement moins précis que celui d'une convolution dilatée. Par conséquent, les circonvolutions dilatées peuvent être plus couramment utilisées dans les tâches nécessitant des champs récepteurs accrus.
En bref, la convolution dilatée et la convolution dilatée sont des opérations de convolution couramment utilisées dans les réseaux neuronaux convolutifs. Elles peuvent être converties les unes dans les autres et peuvent également être utilisées dans différentes tâches. L'opération de convolution spécifique à utiliser dépend de la détermination spécifique. par les exigences de la tâche.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

AI augmentant la préparation des aliments Bien qu'ils soient encore dans une utilisation naissante, les systèmes d'IA sont de plus en plus utilisés dans la préparation des aliments. Les robots dirigés AI sont utilisés dans les cuisines pour automatiser

Introduction Comprendre les espaces de noms, les lunettes et le comportement des variables dans les fonctions Python est crucial pour écrire efficacement et éviter les erreurs ou exceptions d'exécution. Dans cet article, nous plongerons dans divers ASP

Introduction Imaginez vous promener dans une galerie d'art, entourée de peintures et de sculptures vives. Maintenant, que se passe-t-il si vous pouviez poser une question à chaque pièce et obtenir une réponse significative? Vous pourriez demander: «Quelle histoire racontez-vous?

Poursuivant la cadence du produit, MediaTek ce mois-ci a fait une série d'annonces, notamment le nouveau Kompanio Ultra et Dimensity 9400. Ces produits remplissent les parties les plus traditionnelles des activités de MediaTek, qui comprennent des puces pour smartphone

# 1 Google a lancé agent2agent L'histoire: c'est lundi matin. En tant que recruteur propulsé par l'IA, vous travaillez plus intelligemment, pas plus difficile. Vous vous connectez au tableau de bord de votre entreprise sur votre téléphone. Il vous indique que trois rôles critiques ont été achetés, vérifiés et programmés pour

Je suppose que vous devez l'être. Nous semblons tous savoir que Psychobabble se compose d'un bavardage assorti qui mélange diverses terminologies psychologiques et finit souvent par être incompréhensibles ou complètement absurdes. Tout ce que vous avez à faire pour cracher

Selon une nouvelle étude publiée cette semaine. Pendant ce temps, le plastique continue de s'accumuler dans les décharges et les écosystèmes - dans le monde. Mais l'aide est en route. Une équipe d'angle

Ma récente conversation avec Andy Macmillan, PDG de la principale plate-forme d'analyse d'entreprise Alteryx, a souligné ce rôle critique mais sous-estimé dans la révolution de l'IA. Comme l'explique Macmillan, l'écart entre les données commerciales brutes et l'informat prêt à l'AI


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

DVWA
Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

Dreamweaver CS6
Outils de développement Web visuel

Version Mac de WebStorm
Outils de développement JavaScript utiles