recherche
MaisonPériphériques technologiquesIATechnologie d'IA appliquée à la comparaison de documents

Technologie d'IA appliquée à la comparaison de documents

Jan 22, 2024 pm 09:24 PM
人工智能特征工程

Technologie dIA appliquée à la comparaison de documents

L'avantage de la comparaison de documents grâce à l'IA est sa capacité à détecter automatiquement et à comparer rapidement les modifications et les différences entre les documents, ce qui permet d'économiser du temps et du travail et de réduire le risque d'erreur humaine. De plus, l'IA peut traiter de grandes quantités de données textuelles, améliorer l'efficacité et la précision du traitement et comparer différentes versions de documents pour aider les utilisateurs à trouver rapidement la dernière version et le contenu modifié.

La comparaison de documents AI comprend généralement deux étapes principales : le prétraitement du texte et la comparaison de texte. Premièrement, le texte doit être prétraité pour le convertir en une forme exploitable par ordinateur. Ensuite, les différences entre les textes sont déterminées en comparant leur similarité. Ce qui suit prendra la comparaison de deux fichiers texte comme exemple pour présenter ce processus en détail.

Prétraitement du texte

Tout d'abord, nous devons prétraiter le texte. Cela inclut des opérations telles que la segmentation des mots, la suppression des mots vides et la recherche de racines afin que les ordinateurs puissent traiter le texte. Dans cet exemple, nous pouvons utiliser la bibliothèque NLTK en Python pour le prétraitement. Voici un exemple de code simple : ```python importer nltk à partir de nltk.corpus importer des mots vides à partir de nltk.stem importer PorterStemmer depuis nltk.tokenize importer word_tokenize # Téléchargez les ressources de mots vides et de stemmers nltk.download('mots vides') nltk.download('point') # Définir les mots vides et les stemmers stop_words = set(stopwords.words('anglais')) stemmer = PorterStemmer() # définir le texte text = "Ceci est un exemple de phrase. Nous devons le prétraiter." # Participe jetons = word_tokenize (texte) # Supprimer les mots vides et les radicaux filtered_text = [stemmer.stem(word) for word in

import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer

def preprocess(text):
    # 分词
    tokens = word_tokenize(text.lower())
    # 去除停用词
    stop_words = set(stopwords.words('english'))
    filtered_tokens = [token for token in tokens if token not in stop_words]
    # 词干提取
    porter = PorterStemmer()
    stemmed_tokens = [porter.stem(token) for token in filtered_tokens]
    # 返回处理后的文本
    return stemmed_tokens

Calcul de la similarité

Ensuite, nous devons calculer la similarité entre deux textes. Les méthodes couramment utilisées incluent la similarité cosinus, la similarité Jaccard, etc. Dans cet exemple, nous utiliserons la similarité cosinus pour comparer la similarité de deux textes. Voici un exemple de code pour calculer la similarité cosinus :

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def compare(text1, text2):
    # 对文本进行预处理
    processed_text1 = preprocess(text1)
    processed_text2 = preprocess(text2)
    # 将文本转化为TF-IDF向量
    tfidf_vectorizer = TfidfVectorizer()
    tfidf_matrix = tfidf_vectorizer.fit_transform([text1, text2])
    #计算文本间的余弦相似度
    similarity = cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
    # 返回相似度
    return similarity

Maintenant, nous pouvons combiner les deux fonctions ci-dessus pour écrire un programme complet de comparaison de texte. Voici un exemple de code :

import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def preprocess(text):
    # 分词
    tokens = word_tokenize(text.lower())
    # 去除停用词
    stop_words = set(stopwords.words('english'))
    filtered_tokens = [token for token in tokens if token not in stop_words]
    # 词干提取
    porter = PorterStemmer()
    stemmed_tokens = [porter.stem(token) for token in filtered_tokens]
    # 返回处理后的文本
    return stemmed_tokens

def compare(text1, text2):
    # 对文本进行预处理
    processed_text1 = preprocess(text1)
    processed_text2 = preprocess(text2)
    # 将文本转化为TF-IDF向量
    tfidf_vectorizer = TfidfVectorizer()
    tfidf_matrix = tfidf_vectorizer.fit_transform([text1, text2])
    # 计算文本间的余弦相似度
    similarity = cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0]
    # 返回相似度
    return similarity

if __name__ == '__main__':
    # 读取文件内容
    with open('file1.txt', 'r') as f1:
        text1 = f1.read()
    with open('file2.txt', 'r') as f2:
        text2 = f2.read()
    # 对比两个文件的文本相似度
    similarity = compare(text1, text2)
    print('The similarity between the two files is: ', similarity)

Avec le code ci-dessus, nous pouvons lire le contenu de deux fichiers texte et calculer la similitude entre eux.

Il convient de noter que le programme ci-dessus n'est qu'un exemple simple. Les applications pratiques peuvent nécessiter des méthodes de prétraitement et de comparaison de texte plus complexes, ainsi que la capacité de traiter de grandes quantités de fichiers texte. De plus, en raison de la complexité du texte, la comparaison des textes ne reflète pas toujours avec précision les différences entre les textes, de sorte que des tests et des vérifications suffisants sont nécessaires dans les applications pratiques.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer
Gemma Scope: le microscope de Google pour regarder dans le processus de pensée de l'IAGemma Scope: le microscope de Google pour regarder dans le processus de pensée de l'IAApr 17, 2025 am 11:55 AM

Explorer le fonctionnement interne des modèles de langue avec Gemma Scope Comprendre les complexités des modèles de langue IA est un défi important. La sortie de Google de Gemma Scope, une boîte à outils complète, offre aux chercheurs un moyen puissant de plonger

Qui est un analyste de Business Intelligence et comment en devenir un?Qui est un analyste de Business Intelligence et comment en devenir un?Apr 17, 2025 am 11:44 AM

Déverrouiller le succès de l'entreprise: un guide pour devenir un analyste de Business Intelligence Imaginez transformer les données brutes en informations exploitables qui stimulent la croissance organisationnelle. C'est le pouvoir d'un analyste de Business Intelligence (BI) - un rôle crucial dans GU

Comment ajouter une colonne dans SQL? - Analytique VidhyaComment ajouter une colonne dans SQL? - Analytique VidhyaApr 17, 2025 am 11:43 AM

Instruction ALTER TABLE de SQL: Ajout de colonnes dynamiquement à votre base de données Dans la gestion des données, l'adaptabilité de SQL est cruciale. Besoin d'ajuster votre structure de base de données à la volée? L'énoncé de la table alter est votre solution. Ce guide détaille l'ajout de Colu

Analyste d'entreprise vs analyste de donnéesAnalyste d'entreprise vs analyste de donnéesApr 17, 2025 am 11:38 AM

Introduction Imaginez un bureau animé où deux professionnels collaborent sur un projet critique. L'analyste commercial se concentre sur les objectifs de l'entreprise, l'identification des domaines d'amélioration et la garantie d'alignement stratégique sur les tendances du marché. Simulé

Que sont le comte et le coude à Excel? - Analytique VidhyaQue sont le comte et le coude à Excel? - Analytique VidhyaApr 17, 2025 am 11:34 AM

Excel Counting and Analysis: Explication détaillée du nombre et des fonctions de compte Le comptage et l'analyse des données précises sont essentiels dans Excel, en particulier lorsque vous travaillez avec de grands ensembles de données. Excel fournit une variété de fonctions pour y parvenir, les fonctions Count et Count sont des outils clés pour compter le nombre de cellules dans différentes conditions. Bien que les deux fonctions soient utilisées pour compter les cellules, leurs cibles de conception sont ciblées sur différents types de données. Faisons des détails spécifiques du comptage et des fonctions de coude, mettons en évidence leurs caractéristiques et différences uniques et apprenez à les appliquer dans l'analyse des données. Aperçu des points clés Comprendre le nombre et le cou

Chrome est là avec l'IA: vivre quelque chose de nouveau tous les jours !!Chrome est là avec l'IA: vivre quelque chose de nouveau tous les jours !!Apr 17, 2025 am 11:29 AM

La révolution de l'IA de Google Chrome: une expérience de navigation personnalisée et efficace L'intelligence artificielle (IA) transforme rapidement notre vie quotidienne, et Google Chrome mène la charge dans l'arène de navigation Web. Cet article explore les exciti

Côté humain de l'AI: le bien-être et le quadruple de basCôté humain de l'AI: le bien-être et le quadruple de basApr 17, 2025 am 11:28 AM

Réinventuation d'impact: le quadruple bas Pendant trop longtemps, la conversation a été dominée par une vision étroite de l’impact de l’IA, principalement axée sur le résultat du profit. Cependant, une approche plus holistique reconnaît l'interconnexion de BU

5 cas d'utilisation de l'informatique quantique qui change la donne que vous devriez connaître5 cas d'utilisation de l'informatique quantique qui change la donne que vous devriez connaîtreApr 17, 2025 am 11:24 AM

Les choses évoluent régulièrement vers ce point. L'investissement affluant dans les prestataires de services quantiques et les startups montre que l'industrie comprend son importance. Et un nombre croissant de cas d'utilisation réels émergent pour démontrer sa valeur

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Version Mac de WebStorm

Version Mac de WebStorm

Outils de développement JavaScript utiles

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Adaptateur de serveur SAP NetWeaver pour Eclipse

Adaptateur de serveur SAP NetWeaver pour Eclipse

Intégrez Eclipse au serveur d'applications SAP NetWeaver.