L'avantage de la comparaison de documents grâce à l'IA est sa capacité à détecter automatiquement et à comparer rapidement les modifications et les différences entre les documents, ce qui permet d'économiser du temps et du travail et de réduire le risque d'erreur humaine. De plus, l'IA peut traiter de grandes quantités de données textuelles, améliorer l'efficacité et la précision du traitement et comparer différentes versions de documents pour aider les utilisateurs à trouver rapidement la dernière version et le contenu modifié.
La comparaison de documents AI comprend généralement deux étapes principales : le prétraitement du texte et la comparaison de texte. Premièrement, le texte doit être prétraité pour le convertir en une forme exploitable par ordinateur. Ensuite, les différences entre les textes sont déterminées en comparant leur similarité. Ce qui suit prendra la comparaison de deux fichiers texte comme exemple pour présenter ce processus en détail.
Prétraitement du texte
Tout d'abord, nous devons prétraiter le texte. Cela inclut des opérations telles que la segmentation des mots, la suppression des mots vides et la recherche de racines afin que les ordinateurs puissent traiter le texte. Dans cet exemple, nous pouvons utiliser la bibliothèque NLTK en Python pour le prétraitement. Voici un exemple de code simple : ```python importer nltk à partir de nltk.corpus importer des mots vides à partir de nltk.stem importer PorterStemmer depuis nltk.tokenize importer word_tokenize # Téléchargez les ressources de mots vides et de stemmers nltk.download('mots vides') nltk.download('point') # Définir les mots vides et les stemmers stop_words = set(stopwords.words('anglais')) stemmer = PorterStemmer() # définir le texte text = "Ceci est un exemple de phrase. Nous devons le prétraiter." # Participe jetons = word_tokenize (texte) # Supprimer les mots vides et les radicaux filtered_text = [stemmer.stem(word) for word in
import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer def preprocess(text): # 分词 tokens = word_tokenize(text.lower()) # 去除停用词 stop_words = set(stopwords.words('english')) filtered_tokens = [token for token in tokens if token not in stop_words] # 词干提取 porter = PorterStemmer() stemmed_tokens = [porter.stem(token) for token in filtered_tokens] # 返回处理后的文本 return stemmed_tokens
Calcul de la similarité
Ensuite, nous devons calculer la similarité entre deux textes. Les méthodes couramment utilisées incluent la similarité cosinus, la similarité Jaccard, etc. Dans cet exemple, nous utiliserons la similarité cosinus pour comparer la similarité de deux textes. Voici un exemple de code pour calculer la similarité cosinus :
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity def compare(text1, text2): # 对文本进行预处理 processed_text1 = preprocess(text1) processed_text2 = preprocess(text2) # 将文本转化为TF-IDF向量 tfidf_vectorizer = TfidfVectorizer() tfidf_matrix = tfidf_vectorizer.fit_transform([text1, text2]) #计算文本间的余弦相似度 similarity = cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0] # 返回相似度 return similarity
Maintenant, nous pouvons combiner les deux fonctions ci-dessus pour écrire un programme complet de comparaison de texte. Voici un exemple de code :
import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity def preprocess(text): # 分词 tokens = word_tokenize(text.lower()) # 去除停用词 stop_words = set(stopwords.words('english')) filtered_tokens = [token for token in tokens if token not in stop_words] # 词干提取 porter = PorterStemmer() stemmed_tokens = [porter.stem(token) for token in filtered_tokens] # 返回处理后的文本 return stemmed_tokens def compare(text1, text2): # 对文本进行预处理 processed_text1 = preprocess(text1) processed_text2 = preprocess(text2) # 将文本转化为TF-IDF向量 tfidf_vectorizer = TfidfVectorizer() tfidf_matrix = tfidf_vectorizer.fit_transform([text1, text2]) # 计算文本间的余弦相似度 similarity = cosine_similarity(tfidf_matrix[0], tfidf_matrix[1])[0][0] # 返回相似度 return similarity if __name__ == '__main__': # 读取文件内容 with open('file1.txt', 'r') as f1: text1 = f1.read() with open('file2.txt', 'r') as f2: text2 = f2.read() # 对比两个文件的文本相似度 similarity = compare(text1, text2) print('The similarity between the two files is: ', similarity)
Avec le code ci-dessus, nous pouvons lire le contenu de deux fichiers texte et calculer la similitude entre eux.
Il convient de noter que le programme ci-dessus n'est qu'un exemple simple. Les applications pratiques peuvent nécessiter des méthodes de prétraitement et de comparaison de texte plus complexes, ainsi que la capacité de traiter de grandes quantités de fichiers texte. De plus, en raison de la complexité du texte, la comparaison des textes ne reflète pas toujours avec précision les différences entre les textes, de sorte que des tests et des vérifications suffisants sont nécessaires dans les applications pratiques.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Explorer le fonctionnement interne des modèles de langue avec Gemma Scope Comprendre les complexités des modèles de langue IA est un défi important. La sortie de Google de Gemma Scope, une boîte à outils complète, offre aux chercheurs un moyen puissant de plonger

Déverrouiller le succès de l'entreprise: un guide pour devenir un analyste de Business Intelligence Imaginez transformer les données brutes en informations exploitables qui stimulent la croissance organisationnelle. C'est le pouvoir d'un analyste de Business Intelligence (BI) - un rôle crucial dans GU

Instruction ALTER TABLE de SQL: Ajout de colonnes dynamiquement à votre base de données Dans la gestion des données, l'adaptabilité de SQL est cruciale. Besoin d'ajuster votre structure de base de données à la volée? L'énoncé de la table alter est votre solution. Ce guide détaille l'ajout de Colu

Introduction Imaginez un bureau animé où deux professionnels collaborent sur un projet critique. L'analyste commercial se concentre sur les objectifs de l'entreprise, l'identification des domaines d'amélioration et la garantie d'alignement stratégique sur les tendances du marché. Simulé

Excel Counting and Analysis: Explication détaillée du nombre et des fonctions de compte Le comptage et l'analyse des données précises sont essentiels dans Excel, en particulier lorsque vous travaillez avec de grands ensembles de données. Excel fournit une variété de fonctions pour y parvenir, les fonctions Count et Count sont des outils clés pour compter le nombre de cellules dans différentes conditions. Bien que les deux fonctions soient utilisées pour compter les cellules, leurs cibles de conception sont ciblées sur différents types de données. Faisons des détails spécifiques du comptage et des fonctions de coude, mettons en évidence leurs caractéristiques et différences uniques et apprenez à les appliquer dans l'analyse des données. Aperçu des points clés Comprendre le nombre et le cou

La révolution de l'IA de Google Chrome: une expérience de navigation personnalisée et efficace L'intelligence artificielle (IA) transforme rapidement notre vie quotidienne, et Google Chrome mène la charge dans l'arène de navigation Web. Cet article explore les exciti

Réinventuation d'impact: le quadruple bas Pendant trop longtemps, la conversation a été dominée par une vision étroite de l’impact de l’IA, principalement axée sur le résultat du profit. Cependant, une approche plus holistique reconnaît l'interconnexion de BU

Les choses évoluent régulièrement vers ce point. L'investissement affluant dans les prestataires de services quantiques et les startups montre que l'industrie comprend son importance. Et un nombre croissant de cas d'utilisation réels émergent pour démontrer sa valeur


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Version Mac de WebStorm
Outils de développement JavaScript utiles

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.