recherche

Pénalité de Laplace

La régularisation laplacienne est une méthode courante de régularisation de modèle d'apprentissage automatique utilisée pour empêcher le surajustement du modèle. Son principe est de limiter la complexité du modèle en ajoutant un terme de pénalité L1 ou L2 à la fonction de perte du modèle, afin que le modèle ne surajuste pas les données d'entraînement et améliore la capacité de généralisation du modèle.

En machine learning, le but d'un modèle est de trouver une fonction qui correspond le mieux aux données connues. Cependant, une dépendance excessive à l’égard des données d’entraînement peut entraîner de mauvaises performances sur les données de test, ce que l’on appelle le surapprentissage. Une des causes du surajustement est que le modèle est trop complexe, peut-être avec trop de paramètres ou de fonctionnalités libres. Afin d'éviter le surajustement, nous devons contraindre la complexité du modèle, ce qui est le rôle de la régularisation. Avec la régularisation, nous pouvons limiter le nombre de paramètres ou de fonctionnalités du modèle, empêchant ainsi le surajustement des données d'entraînement. Cette contrainte peut être obtenue en introduisant un terme de régularisation, qui pénalise la complexité du modèle lors du processus d'optimisation pour trouver un point d'équilibre plus approprié. Il existe de nombreuses méthodes de régularisation, telles que la régularisation L1 et la régularisation L2. Le choix d'une méthode de régularisation appropriée peut améliorer la capacité de généralisation du modèle et lui permettre de mieux fonctionner sur des données inconnues.

L'idée principale de la régularisation laplacienne est de contraindre la complexité du modèle en ajoutant un terme de pénalité L1 ou L2 à la fonction de perte du modèle. Ces termes de pénalité sont calculés en multipliant le paramètre de régularisation par la norme L1 ou L2 des paramètres du modèle, également appelée décroissance du poids. Le paramètre de régularisation est un hyperparamètre qui doit être ajusté pendant l'entraînement pour trouver le degré de régularisation optimal. En introduisant la régularisation, le modèle peut mieux résoudre le problème de surajustement et améliorer la capacité de généralisation du modèle.

Le terme de pénalité dans la régularisation L1 est la somme des valeurs absolues de tous les éléments du vecteur poids. Par conséquent, la régularisation L1 peut encourager certains poids à devenir nuls, réalisant ainsi une sélection de fonctionnalités, c'est-à-dire la suppression de fonctionnalités qui ne sont pas importantes pour le modèle. Cette caractéristique permet à la régularisation L1 de bien fonctionner sur des ensembles de données de grande dimension, réduisant le nombre de fonctionnalités et améliorant la capacité de généralisation du modèle.

Le terme de pénalité dans la régularisation L2 est la somme des carrés de tous les éléments du vecteur poids. Contrairement à la régularisation L1, la régularisation L2 ne ramène pas les poids à zéro, mais contraint la complexité du modèle en ralentissant la croissance des poids. Cela résout efficacement les problèmes de colinéarité, car cela répartit le poids sur plusieurs fonctionnalités liées et évite d'être trop dépendant d'une seule fonctionnalité.

La fonction de la régularisation laplacienne est de contrôler la complexité du modèle pendant le processus de formation, évitant ainsi le surajustement. Plus la valeur du paramètre de régularisation est grande, plus l’impact du terme de pénalité sur la perte du modèle est grand et plus le modèle est complexe. Par conséquent, en ajustant la valeur du paramètre de régularisation, nous pouvons contrôler le compromis entre la complexité et la capacité de généralisation du modèle.

En bref, la régularisation laplacienne est une méthode courante de régularisation de modèle d'apprentissage automatique. Elle limite la complexité du modèle en ajoutant un terme de pénalité L1 ou L2 à la fonction de perte, évitant ainsi le surajustement et améliorant la capacité de généralisation du modèle. Dans les applications pratiques, nous devons effectuer une sélection basée sur les caractéristiques de l'ensemble de données et les performances du modèle, et trouver le degré de régularisation optimal en ajustant la valeur du paramètre de régularisation.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer
Cuisiner l'innovation: comment l'intelligence artificielle transforme les services alimentairesCuisiner l'innovation: comment l'intelligence artificielle transforme les services alimentairesApr 12, 2025 pm 12:09 PM

AI augmentant la préparation des aliments Bien qu'ils soient encore dans une utilisation naissante, les systèmes d'IA sont de plus en plus utilisés dans la préparation des aliments. Les robots dirigés AI sont utilisés dans les cuisines pour automatiser

Guide complet sur les espaces de noms Python et les lunettes variablesGuide complet sur les espaces de noms Python et les lunettes variablesApr 12, 2025 pm 12:00 PM

Introduction Comprendre les espaces de noms, les lunettes et le comportement des variables dans les fonctions Python est crucial pour écrire efficacement et éviter les erreurs ou exceptions d'exécution. Dans cet article, nous plongerons dans divers ASP

Un guide complet des modèles de langue de vision (VLMS)Un guide complet des modèles de langue de vision (VLMS)Apr 12, 2025 am 11:58 AM

Introduction Imaginez vous promener dans une galerie d'art, entourée de peintures et de sculptures vives. Maintenant, que se passe-t-il si vous pouviez poser une question à chaque pièce et obtenir une réponse significative? Vous pourriez demander: «Quelle histoire racontez-vous?

MediaTek augmente la gamme premium avec Kompanio Ultra et Dimensity 9400MediaTek augmente la gamme premium avec Kompanio Ultra et Dimensity 9400Apr 12, 2025 am 11:52 AM

Poursuivant la cadence du produit, MediaTek ce mois-ci a fait une série d'annonces, notamment le nouveau Kompanio Ultra et Dimensity 9400. Ces produits remplissent les parties les plus traditionnelles des activités de MediaTek, qui comprennent des puces pour smartphone

Cette semaine dans l'IA: Walmart établit des tendances de la mode avant qu'ils ne se produisent jamaisCette semaine dans l'IA: Walmart établit des tendances de la mode avant qu'ils ne se produisent jamaisApr 12, 2025 am 11:51 AM

# 1 Google a lancé agent2agent L'histoire: c'est lundi matin. En tant que recruteur propulsé par l'IA, vous travaillez plus intelligemment, pas plus difficile. Vous vous connectez au tableau de bord de votre entreprise sur votre téléphone. Il vous indique que trois rôles critiques ont été achetés, vérifiés et programmés pour

L'IA générative rencontre le psychobabbleL'IA générative rencontre le psychobabbleApr 12, 2025 am 11:50 AM

Je suppose que vous devez l'être. Nous semblons tous savoir que Psychobabble se compose d'un bavardage assorti qui mélange diverses terminologies psychologiques et finit souvent par être incompréhensibles ou complètement absurdes. Tout ce que vous avez à faire pour cracher

Le prototype: les scientifiques transforment le papier en plastiqueLe prototype: les scientifiques transforment le papier en plastiqueApr 12, 2025 am 11:49 AM

Selon une nouvelle étude publiée cette semaine. Pendant ce temps, le plastique continue de s'accumuler dans les décharges et les écosystèmes - dans le monde. Mais l'aide est en route. Une équipe d'angle

La montée en puissance de l'analyste de l'IA: pourquoi cela pourrait être le travail le plus important de la révolution de l'IALa montée en puissance de l'analyste de l'IA: pourquoi cela pourrait être le travail le plus important de la révolution de l'IAApr 12, 2025 am 11:41 AM

Ma récente conversation avec Andy Macmillan, PDG de la principale plate-forme d'analyse d'entreprise Alteryx, a souligné ce rôle critique mais sous-estimé dans la révolution de l'IA. Comme l'explique Macmillan, l'écart entre les données commerciales brutes et l'informat prêt à l'AI

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

MinGW - GNU minimaliste pour Windows

MinGW - GNU minimaliste pour Windows

Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

Version crackée d'EditPlus en chinois

Version crackée d'EditPlus en chinois

Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux