Maison >base de données >tutoriel mysql >Explication détaillée de l'opération de suppression d'arbre B : Illustration détaillée de l'opération de suppression d'arbre B à l'aide de Python
L'opération de suppression de l'arbre B doit prendre en compte l'emplacement et l'équilibre des nœuds, et un sous-débordement est susceptible de se produire. Un dépassement de capacité se produit lorsqu'un nœud contient moins que le nombre minimum de nœuds enfants qu'il devrait contenir.
sans affecter la balance.
Situation de sous-versement.
Supprimer les nœuds internes.
# B树节点 class BTreeNode: def __init__(self, leaf=False): self.leaf = leaf self.keys = [] self.child = [] class BTree: def __init__(self, t): self.root = BTreeNode(True) self.t = t # 插入元素 def insert(self, k): root = self.root if len(root.keys) == (2 * self.t) - 1: temp = BTreeNode() self.root = temp temp.child.insert(0, root) self.split_child(temp, 0) self.insert_non_full(temp, k) else: self.insert_non_full(root, k) def insert_non_full(self, x, k): i = len(x.keys) - 1 if x.leaf: x.keys.append((None, None)) while i >= 0 and k[0] < x.keys[i][0]: x.keys[i + 1] = x.keys[i] i -= 1 x.keys[i + 1] = k else: while i >= 0 and k[0] < x.keys[i][0]: i -= 1 i += 1 if len(x.child[i].keys) == (2 * self.t) - 1: self.split_child(x, i) if k[0] > x.keys[i][0]: i += 1 self.insert_non_full(x.child[i], k) # 分开子节点 def split_child(self, x, i): t = self.t y = x.child[i] z = BTreeNode(y.leaf) x.child.insert(i + 1, z) x.keys.insert(i, y.keys[t - 1]) z.keys = y.keys[t: (2 * t) - 1] y.keys = y.keys[0: t - 1] if not y.leaf: z.child = y.child[t: 2 * t] y.child = y.child[0: t - 1] # 删除节点 def delete(self, x, k): t = self.t i = 0 while i < len(x.keys) and k[0] > x.keys[i][0]: i += 1 if x.leaf: if i < len(x.keys) and x.keys[i][0] == k[0]: x.keys.pop(i) return return if i < len(x.keys) and x.keys[i][0] == k[0]: return self.delete_internal_node(x, k, i) elif len(x.child[i].keys) >= t: self.delete(x.child[i], k) else: if i != 0 and i + 2 < len(x.child): if len(x.child[i - 1].keys) >= t: self.delete_sibling(x, i, i - 1) elif len(x.child[i + 1].keys) >= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i == 0: if len(x.child[i + 1].keys) >= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i + 1 == len(x.child): if len(x.child[i - 1].keys) >= t: self.delete_sibling(x, i, i - 1) else: self.delete_merge(x, i, i - 1) self.delete(x.child[i], k) # 删除节点 def delete_internal_node(self, x, k, i): t = self.t if x.leaf: if x.keys[i][0] == k[0]: x.keys.pop(i) return return if len(x.child[i].keys) >= t: x.keys[i] = self.delete_predecessor(x.child[i]) return elif len(x.child[i + 1].keys) >= t: x.keys[i] = self.delete_successor(x.child[i + 1]) return else: self.delete_merge(x, i, i + 1) self.delete_internal_node(x.child[i], k, self.t - 1) # 删除前节点 def delete_predecessor(self, x): if x.leaf: return x.pop() n = len(x.keys) - 1 if len(x.child[n].keys) >= self.t: self.delete_sibling(x, n + 1, n) else: self.delete_merge(x, n, n + 1) self.delete_predecessor(x.child[n]) # 删除继任节点 def delete_successor(self, x): if x.leaf: return x.keys.pop(0) if len(x.child[1].keys) >= self.t: self.delete_sibling(x, 0, 1) else: self.delete_merge(x, 0, 1) self.delete_successor(x.child[0]) def delete_merge(self, x, i, j): cnode = x.child[i] if j > i: rsnode = x.child[j] cnode.keys.append(x.keys[i]) for k in range(len(rsnode.keys)): cnode.keys.append(rsnode.keys[k]) if len(rsnode.child) > 0: cnode.child.append(rsnode.child[k]) if len(rsnode.child) > 0: cnode.child.append(rsnode.child.pop()) new = cnode x.keys.pop(i) x.child.pop(j) else: lsnode = x.child[j] lsnode.keys.append(x.keys[j]) for i in range(len(cnode.keys)): lsnode.keys.append(cnode.keys[i]) if len(lsnode.child) > 0: lsnode.child.append(cnode.child[i]) if len(lsnode.child) > 0: lsnode.child.append(cnode.child.pop()) new = lsnode x.keys.pop(j) x.child.pop(i) if x == self.root and len(x.keys) == 0: self.root = new # 删除同一级的其他子节点 def delete_sibling(self, x, i, j): cnode = x.child[i] if i < j: rsnode = x.child[j] cnode.keys.append(x.keys[i]) x.keys[i] = rsnode.keys[0] if len(rsnode.child) > 0: cnode.child.append(rsnode.child[0]) rsnode.child.pop(0) rsnode.keys.pop(0) else: lsnode = x.child[j] cnode.keys.insert(0, x.keys[i - 1]) x.keys[i - 1] = lsnode.keys.pop() if len(lsnode.child) > 0: cnode.child.insert(0, lsnode.child.pop()) # 输出B树 def print_tree(self, x, l=0): print("Level ", l, " ", len(x.keys), end=":") for i in x.keys: print(i, end=" ") print() l += 1 if len(x.child) > 0: for i in x.child: self.print_tree(i, l) B = BTree(3) for i in range(10): B.insert((i, 2 * i)) B.print_tree(B.root) B.delete(B.root, (8,)) print("\n") B.print_tree(B.root)
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!