


Utilisez matplotlib pour réaliser l'application pratique du nuage de points d'un ensemble de données
Procédure pratique : utilisez Matplotlib pour dessiner un nuage de points d'un ensemble de données
Matplotlib est l'une des bibliothèques de dessins couramment utilisées en Python. Elle fournit des fonctions riches et peut dessiner différents types de graphiques. Parmi eux, le nuage de points est une méthode de visualisation de données courante utilisée pour montrer la relation entre deux variables. Cet article expliquera comment utiliser Matplotlib pour dessiner un nuage de points d'un ensemble de données et joindra des exemples de code spécifiques.
Tout d'abord, nous devons installer la bibliothèque Matplotlib. Vous pouvez utiliser la commande pip pour exécuter l'instruction suivante pour installer :
pip install matplotlib
Une fois l'installation terminée, nous pouvons importer la bibliothèque Matplotlib et commencer à dessiner des nuages de points.
import matplotlib.pyplot as plt # 模拟数据集 x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] # 绘制散点图 plt.scatter(x, y) # 添加标题和标签 plt.title('Scatter Plot') plt.xlabel('X-axis') plt.ylabel('Y-axis') # 显示图像 plt.show()
Le code ci-dessus importe d'abord la bibliothèque Matplotlib, puis définit deux listes x et y comme ensembles de données simulés. Ensuite, nous utilisons la fonction scatter pour tracer un nuage de points, en passant x et y comme paramètres.
Après avoir dessiné l'image, nous ajoutons les étiquettes de titre et d'axe en appelant les fonctions title, xlabel et ylabel. Parmi elles, la fonction title est utilisée pour ajouter un titre de graphique, et les fonctions xlabel et ylabel sont utilisées pour ajouter respectivement des étiquettes sur les axes x et y.
Enfin, affichez l'image en appelant la fonction show.
Après avoir exécuté le code, une nouvelle fenêtre apparaîtra montrant le nuage de points. L'abscisse de chaque point de la figure représente l'élément correspondant dans la liste x, et l'ordonnée représente l'élément correspondant dans la liste y. La couleur et la taille des points peuvent être personnalisées en fonction des besoins réels.
En plus des simples nuages de points, nous pouvons également ajouter d'autres éléments selon les besoins, tels que des légendes, des cartes de couleurs, etc. Ce qui suit est un exemple de code légèrement plus complexe :
import matplotlib.pyplot as plt import numpy as np # 模拟数据集 x = np.random.rand(100) y = np.random.rand(100) colors = np.random.rand(100) sizes = np.random.randint(10, 100, 100) # 绘制散点图 plt.scatter(x, y, c=colors, s=sizes, cmap='viridis') # 添加颜色条 plt.colorbar() # 添加标题和标签 plt.title('Scatter Plot with Colorbar') plt.xlabel('X-axis') plt.ylabel('Y-axis') # 显示图像 plt.show()
Dans le code ci-dessus, nous utilisons le module aléatoire de la bibliothèque NumPy pour générer des données plus aléatoires et spécifions la couleur et la taille des points via les paramètres c et s respectivement. Grâce au paramètre cmap, nous pouvons également ajouter une palette de couleurs (colormap) à la couleur pour rendre l'image plus colorée.
De plus, nous utilisons également la fonction colorbar pour ajouter une barre de couleur pour représenter la plage de changements de couleur.
Grâce à l'exemple de code ci-dessus, nous pouvons utiliser de manière flexible la bibliothèque Matplotlib pour dessiner diverses formes de nuages de points en fonction des besoins réels afin de réaliser une analyse visuelle des ensembles de données.
Pour résumer, cet article explique comment utiliser Matplotlib pour dessiner un nuage de points d'un ensemble de données et donne des exemples de code spécifiques. Nous espérons que les lecteurs pourront maîtriser l'utilisation de Matplotlib par la pratique et obtenir une visualisation de données plus riche et plus personnalisée.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et C ont des différences significatives dans la gestion et le contrôle de la mémoire. 1. Python utilise la gestion automatique de la mémoire, basée sur le comptage des références et la collecte des ordures, simplifiant le travail des programmeurs. 2.C nécessite une gestion manuelle de la mémoire, en fournissant plus de contrôle mais en augmentant la complexité et le risque d'erreur. Quelle langue choisir doit être basée sur les exigences du projet et la pile de technologie d'équipe.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Que ce soit pour choisir Python ou C dépend des exigences du projet: 1) Python convient au développement rapide, à la science des données et aux scripts en raison de sa syntaxe concise et de ses bibliothèques riches; 2) C convient aux scénarios qui nécessitent des performances élevées et un contrôle sous-jacent, tels que la programmation système et le développement de jeux, en raison de sa compilation et de sa gestion de la mémoire manuelle.

Python est largement utilisé dans la science des données et l'apprentissage automatique, s'appuyant principalement sur sa simplicité et son puissant écosystème de bibliothèque. 1) Pandas est utilisé pour le traitement et l'analyse des données, 2) Numpy fournit des calculs numériques efficaces, et 3) Scikit-Learn est utilisé pour la construction et l'optimisation du modèle d'apprentissage automatique, ces bibliothèques font de Python un outil idéal pour la science des données et l'apprentissage automatique.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

Dreamweaver CS6
Outils de développement Web visuel

mPDF
mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP