Maison > Article > Périphériques technologiques > NVIDIA, Mila et Caltech lancent conjointement un modèle multimodal de structure moléculaire-texte combinant LLM et découverte de médicaments
Auteur | Liu Shengchao
Éditeur | Kaixia
À partir de 2021, la combinaison du grand langage et de la multimodalité a balayé la communauté de recherche sur l'apprentissage automatique.
Avec le développement de grands modèles et d'applications multimodales, pouvons-nous appliquer ces techniques à la découverte de médicaments ? Et ces descriptions textuelles en langage naturel peuvent-elles apporter de nouvelles perspectives à ce problème difficile ? La réponse est oui, et nous en sommes optimistes
Récemment, des équipes de recherche de l'Institut des algorithmes d'apprentissage de Montréal (Mila) au Canada, de NVIDIA Research, de l'Université de l'Illinois à Urbana-Champaign (UIUC), de l'Université de Princeton et de l'Université de Californie Institute of Technology, un modèle multimodal de structure moléculaire-texte MoleculeSTM est proposé en apprenant conjointement la structure chimique et la description textuelle des molécules grâce à des stratégies d'apprentissage contrastées.
Cette recherche s'intitule « Structure moléculaire multimodale – modèle de texte pour la récupération et l'édition textuelles » et a été publiée dans « Nature Machine Intelligence » le 18 décembre 2023.
Lien papier : https://www.nature.com/articles/s42256-023-00759-6 doit être réécrit
Le Dr Liu Shengchao est le premier auteur, et le professeur Anima Anandkumar de NVIDIA Research est. l'auteur correspondant. Nie Weili, Wang Chengpeng, Lu Jiarui, Qiao Zhuoran, Liu Ling, Tang Jian et Xiao Chaowei sont co-auteurs.
Ce projet a été réalisé par le Dr Liu Shengchao après avoir rejoint NVIDIA Research en mars 2022, sous la direction des professeurs Nie Weili, professeur Tang Jian, professeur Xiao Chaowei et professeur Anima Anandkumar.
Le Dr Liu Shengchao a déclaré : "Notre motivation était de mener une exploration préliminaire du LLM et de la découverte de médicaments, et a finalement proposé MoleculeSTM." est très simple et directe, c'est-à-dire que la description des molécules peut être divisée en deux catégories : la structure chimique interne et la description fonctionnelle externe. Ici, nous utilisons une méthode contrastive de pré-formation pour aligner et connecter ces deux types d'informations. Le diagramme spécifique est présenté dans la figure ci-dessous
Illustration : organigramme MoleculeSTM.
Et cet alignement de MoleculeSTM a une très bonne propriété : lorsqu'il y a des tâches difficiles à résoudre dans l'espace chimique, nous pouvons les transférer dans l'espace du langage naturel. Et les tâches en langage naturel seront relativement plus faciles à résoudre en raison de ses caractéristiques. Sur cette base, nous avons conçu une grande variété de tâches en aval pour vérifier son efficacité. Ci-dessous, nous discutons en détail de plusieurs idées.
Caractéristiques du langage naturel et des grands modèles de langage
Dans MoleculeSTM, nous posons un problème pour la première fois. Nous profitons du vocabulaire ouvert et des caractéristiques combinatoires du langage naturelLe vocabulaire ouvert signifie que nous pouvons exprimer toutes les connaissances humaines actuelles en langage naturel, de sorte que les nouvelles connaissances qui apparaîtront dans le futur peuvent également être résumées et résumées en utilisant le langage existant. Résumer. Par exemple, si une nouvelle protéine apparaît, nous espérons décrire sa fonction en langage naturel. La compositionnalité signifie qu'en langage naturel, un concept complexe peut être exprimé conjointement par plusieurs concepts simples. Ceci est très utile pour des tâches telles que l'édition multi-attributs : il est très difficile d'éditer des molécules pour qu'elles répondent à plusieurs propriétés en même temps dans l'espace chimique, mais nous pouvons exprimer plusieurs propriétés très simplement en langage naturel.
Dans notre récent travail ChatDrug (https://arxiv.org/abs/2305.18090), nous avons exploré les caractéristiques du dialogue entre le langage naturel et les grands modèles de langage. Les amis qui sont intéressés par cela peuvent le vérifierNous avons ainsi conçu trois grandes catégories de tâches :
Nous nous concentrerons sur la deuxième tâche dans la section suivante
Les résultats qualitatifs de l'édition de molécules sont reformulés comme suit :
Cette tâche consiste à saisir une molécule et une description en langage naturel (comme des attributs supplémentaires) au en même temps, puis il est souhaitable de pouvoir produire des descriptions textuelles en langage complexe de nouvelles molécules. Il s’agit d’une optimisation des leads guidée par texte.
La méthode spécifique consiste à utiliser le modèle de génération de molécules déjà entraîné et notre MoleculeSTM pré-entraîné pour apprendre l'alignement de leurs espaces latents afin d'effectuer une interpolation de l'espace latent, puis générer les molécules cibles par décodage. Le diagramme de processus est le suivant.
Le contenu qui doit être réécrit est : un diagramme de processus en deux étapes d'édition moléculaire guidée par texte à échantillon nul
Nous montrons ici les résultats qualitatifs de plusieurs groupes d'édition moléculaire, reformulés comme suit : (Le les détails des résultats des tâches restantes en aval peuvent être consultés (voir le document original). Nous considérons principalement quatre types de tâches d'édition moléculaire :
Affichage des résultats : édition de molécules guidée par texte sans échantillon. (Remarque : il s'agit d'une traduction directe de la phrase originale en chinois.)
Ce qui est plus intéressant est le dernier type de tâche. Nous avons constaté que MoleculeSTM peut effectivement effectuer une correspondance de ligand sur la base de la description textuelle du composé principal. optimisation. (Remarque : les informations sur la structure des protéines ici ne seront connues qu'après évaluation.)
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!